Spaces:
Running
Running
File size: 14,857 Bytes
9392036 ed8f744 913507e d966a8e 6b1f66d 5498932 af68571 6b1f66d 1280fd8 9392036 1280fd8 9392036 2ee3fae 9392036 1280fd8 913507e 574aa10 6ee3759 574aa10 6ee3759 574aa10 6ee3759 f872421 6b1f66d 89ffe36 6b1f66d 89ffe36 6b1f66d 89ffe36 f872421 6b1f66d f872421 ed8f744 f872421 ed8f744 f872421 6b1f66d ed8f744 6ee3759 ed8f744 6b1f66d 6ee3759 6b1f66d 6ee3759 ed8f744 6b1f66d 6ee3759 6b1f66d ed8f744 6b1f66d ed8f744 f872421 6b1f66d ed8f744 6b1f66d d966a8e 6b1f66d f872421 6b1f66d f872421 6ee3759 ed8f744 6b1f66d ed8f744 6b1f66d f872421 6b1f66d d966a8e 6b1f66d f872421 ed8f744 f872421 6b1f66d ed8f744 6b1f66d ed8f744 6b1f66d ed8f744 6b1f66d ed8f744 f872421 89ffe36 69db70c 89ffe36 6b1f66d 89ffe36 ed8f744 6b1f66d 89ffe36 f872421 ed8f744 6b1f66d 89ffe36 6b1f66d 89ffe36 d966a8e ed8f744 6b1f66d ed8f744 6b1f66d ed8f744 6b1f66d ed8f744 6b1f66d ed8f744 6b1f66d ed8f744 6b1f66d ed8f744 6b1f66d ed8f744 6b1f66d ed8f744 5498932 6b1f66d d966a8e 6b1f66d d966a8e 6b1f66d af68571 6b1f66d 08f9513 6b1f66d af68571 69db70c af68571 08f9513 af68571 89ffe36 69db70c 89ffe36 69db70c 89ffe36 6ee3759 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import streamlit as st
import pandas as pd
import numpy as np
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource, DataTable, TableColumn, CustomJS, Select, Button
from bokeh.layouts import column
from bokeh.palettes import Reds9, Blues9, Oranges9, Purples9
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import io
import ot
TOOLTIPS = """
<div>
<div>
<img src="@img{safe}" style="width:128px; height:auto; float: left; margin: 0px 15px 15px 0px;" alt="@img" border="2"></img>
</div>
<div>
<span style="font-size: 17px; font-weight: bold;">@label</span>
</div>
</div>
"""
def config_style():
st.markdown("""
<style>
.main-title { font-size: 50px; color: #4CAF50; text-align: center; }
.sub-title { font-size: 30px; color: #555; }
.custom-text { font-size: 18px; line-height: 1.5; }
</style>
""", unsafe_allow_html=True)
st.markdown('<h1 class="main-title">Merit Embeddings 🎒📃🏆</h1>', unsafe_allow_html=True)
# Carga los datos y asigna versiones de forma uniforme
def load_embeddings(model):
if model == "Donut":
df_real = pd.read_csv("data/donut_de_Rodrigo_merit_secret_all_embeddings.csv")
df_seq = pd.read_csv("data/donut_de_Rodrigo_merit_es-digital-seq_embeddings.csv")
df_line = pd.read_csv("data/idefics2_de_Rodrigo_merit_es-digital-seq_embeddings.csv")
df_real["version"] = "real"
df_seq["version"] = "synthetic"
df_line["version"] = "synthetic"
# Usamos un identificador en la columna 'source' para diferenciarlos
df_seq["source"] = "es-digital-seq"
df_line["source"] = "es-digital-line-degradation-seq"
return {"real": df_real, "synthetic": pd.concat([df_seq, df_line], ignore_index=True)}
elif model == "Idefics2":
df_real = pd.read_csv("data/idefics2_de_Rodrigo_merit_secret_britanico_embeddings.csv")
df_seq = pd.read_csv("data/idefics2_de_Rodrigo_merit_es-digital-seq_embeddings.csv")
df_real["version"] = "real"
df_seq["version"] = "synthetic"
df_seq["source"] = "es-digital-seq"
return {"real": df_real, "synthetic": df_seq}
else:
st.error("Modelo no reconocido")
return None
# Selección de reducción dimensional
def reducer_selector(df_combined, embedding_cols):
reduction_method = st.selectbox("Select Dimensionality Reduction Method:", options=["PCA", "t-SNE"])
all_embeddings = df_combined[embedding_cols].values
if reduction_method == "PCA":
reducer = PCA(n_components=2)
else:
reducer = TSNE(n_components=2, random_state=42, perplexity=30, learning_rate=200)
return reducer.fit_transform(all_embeddings)
# Función genérica para agregar datos al gráfico
def add_dataset_to_fig(fig, df, selected_labels, marker, color_mapping, group_label):
renderers = {}
for label in selected_labels:
subset = df[df['label'] == label]
if subset.empty:
continue
source = ColumnDataSource(data=dict(
x=subset['x'],
y=subset['y'],
label=subset['label'],
img=subset.get('img', "")
))
color = color_mapping[label]
# Se añade el identificador de la fuente en la leyenda
legend_label = f"{label} ({group_label})"
if marker == "circle":
r = fig.circle('x', 'y', size=10, source=source,
fill_color=color, line_color=color,
legend_label=legend_label)
elif marker == "square":
r = fig.square('x', 'y', size=10, source=source,
fill_color=color, line_color=color,
legend_label=legend_label)
elif marker == "triangle":
r = fig.triangle('x', 'y', size=12, source=source,
fill_color=color, line_color=color,
legend_label=legend_label)
renderers[label + f" ({group_label})"] = r
return renderers
# Asigna paletas de colores de forma genérica para cada grupo (real y para cada fuente sintética)
def get_color_maps(unique_subsets):
color_map = {}
# Real
num_real = len(unique_subsets["real"])
red_palette = Reds9[:num_real] if num_real <= 9 else (Reds9 * ((num_real // 9) + 1))[:num_real]
color_map["real"] = {label: red_palette[i] for i, label in enumerate(sorted(unique_subsets["real"]))}
# Synthetic: vamos a separar por fuente (source) basándonos en la lista completa de etiquetas
# Suponemos que en la columna "source" se encuentran los identificadores
synthetic_labels = sorted(unique_subsets["synthetic"])
# Aquí usamos una sola paleta para todos, pero se podría distinguir según la fuente si se quiere
blue_palette = Blues9[:len(synthetic_labels)] if len(synthetic_labels) <= 9 else (Blues9 * ((len(synthetic_labels) // 9) + 1))[:len(synthetic_labels)]
color_map["synthetic"] = {label: blue_palette[i] for i, label in enumerate(synthetic_labels)}
return color_map
# Separa los datos reducidos en "real" y "synthetic" y extrae los subsets (clusters)
def split_versions(df_combined, reduced):
df_combined['x'] = reduced[:, 0]
df_combined['y'] = reduced[:, 1]
df_real = df_combined[df_combined["version"] == "real"].copy()
df_synth = df_combined[df_combined["version"] == "synthetic"].copy()
# Extraemos los clusters (subset) usando la columna 'label'
unique_real = sorted(df_real['label'].unique().tolist())
unique_synth = sorted(df_synth['label'].unique().tolist())
df_dict = {"real": df_real, "synthetic": df_synth}
unique_subsets = {"real": unique_real, "synthetic": unique_synth}
return df_dict, unique_subsets
# Crea el gráfico; se tratan de forma uniforme ambos conjuntos sintéticos
def create_figure(dfs, unique_subsets, color_maps):
fig = figure(width=400, height=400, tooltips=TOOLTIPS, title="")
real_renderers = add_dataset_to_fig(fig, dfs["real"], unique_subsets["real"],
marker="circle", color_mapping=color_maps["real"],
group_label="Real")
# Aquí separamos los puntos sintéticos según su fuente para asignar diferentes marcadores
synth_df = dfs["synthetic"]
# Dividimos por 'source'
df_seq = synth_df[synth_df["source"] == "es-digital-seq"]
df_line = synth_df[synth_df["source"] == "es-digital-line-degradation-seq"]
# Extraemos los clusters para cada fuente (si existen)
unique_seq = sorted(df_seq['label'].unique().tolist())
unique_line = sorted(df_line['label'].unique().tolist())
seq_renderers = add_dataset_to_fig(fig, df_seq, unique_seq,
marker="square", color_mapping=color_maps["synthetic"],
group_label="es-digital-seq")
line_renderers = add_dataset_to_fig(fig, df_line, unique_line,
marker="triangle", color_mapping=color_maps["synthetic"],
group_label="es-digital-line-degradation-seq")
# Combina ambos renderers sintéticos
synthetic_renderers = {**seq_renderers, **line_renderers}
fig.legend.location = "top_right"
fig.legend.click_policy = "hide"
return fig, real_renderers, synthetic_renderers
# Calcula los centros de cada cluster (por grupo)
def calculate_cluster_centers(df, labels):
centers = {}
for label in labels:
subset = df[df['label'] == label]
if not subset.empty:
centers[label] = (subset['x'].mean(), subset['y'].mean())
return centers
# Calcula la distancia Wasserstein de cada subset sintético respecto a cada cluster real (por cluster y global)
def compute_wasserstein_distances_all_synthetics(df_synth, df_real, labels_real):
distances = {}
# Para cada cluster en el conjunto sintético (la tabla mostrará todas las etiquetas)
synth_labels = sorted(df_synth['label'].unique().tolist())
for label in synth_labels:
key = f"{label}"
distances[key] = {}
cluster = df_synth[df_synth['label'] == label][['x','y']].values
n = cluster.shape[0]
weights = np.ones(n) / n
for real_label in labels_real:
cluster_real = df_real[df_real['label'] == real_label][['x','y']].values
m = cluster_real.shape[0]
weights_real = np.ones(m) / m
M = ot.dist(cluster, cluster_real, metric='euclidean')
distances[key][real_label] = ot.emd2(weights, weights_real, M)
# Distancia global del conjunto sintético a cada cluster real
key = "Global synthetic"
distances[key] = {}
global_synth = df_synth[['x','y']].values
n_global = global_synth.shape[0]
weights_global = np.ones(n_global) / n_global
for real_label in labels_real:
cluster_real = df_real[df_real['label'] == real_label][['x','y']].values
m = cluster_real.shape[0]
weights_real = np.ones(m) / m
M = ot.dist(global_synth, cluster_real, metric='euclidean')
distances[key][real_label] = ot.emd2(weights_global, weights_real, M)
return pd.DataFrame(distances).T
def create_table(df_distances):
df_table = df_distances.copy()
df_table.reset_index(inplace=True)
df_table.rename(columns={'index': 'Synthetic'}, inplace=True)
min_row = {"Synthetic": "Min."}
mean_row = {"Synthetic": "Mean"}
max_row = {"Synthetic": "Max."}
for col in df_table.columns:
if col != "Synthetic":
min_row[col] = df_table[col].min()
mean_row[col] = df_table[col].mean()
max_row[col] = df_table[col].max()
df_table = pd.concat([df_table, pd.DataFrame([min_row, mean_row, max_row])], ignore_index=True)
source_table = ColumnDataSource(df_table)
columns = [TableColumn(field='Synthetic', title='Synthetic')]
for col in df_table.columns:
if col != 'Synthetic':
columns.append(TableColumn(field=col, title=col))
total_height = 30 + len(df_table)*28
data_table = DataTable(source=source_table, columns=columns, sizing_mode='stretch_width', height=total_height)
return data_table, df_table, source_table
def run_model(model_name):
embeddings = load_embeddings(model_name)
if embeddings is None:
return
embedding_cols = [col for col in embeddings["real"].columns if col.startswith("dim_")]
# Combina todos los DataFrames
df_combined = pd.concat(list(embeddings.values()), ignore_index=True)
st.markdown('<h6 class="sub-title">Select Dimensionality Reduction Method</h6>', unsafe_allow_html=True)
reduction_method = st.selectbox("", options=["t-SNE", "PCA"], key=model_name)
if reduction_method == "PCA":
reducer = PCA(n_components=2)
else:
reducer = TSNE(n_components=2, random_state=42, perplexity=30, learning_rate=200)
reduced = reducer.fit_transform(df_combined[embedding_cols].values)
dfs_reduced, unique_subsets = split_versions(df_combined, reduced)
# Se espera que unique_subsets tenga claves "real" y "synthetic"
color_maps = get_color_maps(unique_subsets)
fig, real_renderers, synthetic_renderers = create_figure(dfs_reduced, unique_subsets, color_maps)
centers_real = calculate_cluster_centers(dfs_reduced["real"], unique_subsets["real"])
df_distances = compute_wasserstein_distances_all_synthetics(dfs_reduced["synthetic"],
dfs_reduced["real"],
unique_subsets["real"])
data_table, df_table, source_table = create_table(df_distances)
real_subset_names = list(df_table.columns[1:])
real_select = Select(title="", value=real_subset_names[0], options=real_subset_names)
reset_button = Button(label="Reset Colors", button_type="primary")
line_source = ColumnDataSource(data={'x': [], 'y': []})
fig.line('x', 'y', source=line_source, line_width=2, line_color='black')
# Preparar centros para callback (para trazar líneas entre centros)
real_centers_js = {k: [v[0], v[1]] for k, v in centers_real.items()}
# Se podría preparar también los centros sintéticos si se requiere
synthetic_centers = {}
synth_labels = sorted(dfs_reduced["synthetic"]['label'].unique().tolist())
for label in synth_labels:
subset = dfs_reduced["synthetic"][dfs_reduced["synthetic"]['label'] == label]
synthetic_centers[label] = [subset['x'].mean(), subset['y'].mean()]
callback = CustomJS(args=dict(source=source_table, line_source=line_source,
synthetic_centers=synthetic_centers,
real_centers=real_centers_js,
real_select=real_select),
code="""
var selected = source.selected.indices;
if (selected.length > 0) {
var idx = selected[0];
var data = source.data;
var synth_label = data['Synthetic'][idx];
var real_label = real_select.value;
var syn_coords = synthetic_centers[synth_label];
var real_coords = real_centers[real_label];
line_source.data = {'x': [syn_coords[0], real_coords[0]], 'y': [syn_coords[1], real_coords[1]]};
line_source.change.emit();
} else {
line_source.data = {'x': [], 'y': []};
line_source.change.emit();
}
""")
source_table.selected.js_on_change('indices', callback)
real_select.js_on_change('value', callback)
reset_callback = CustomJS(args=dict(line_source=line_source),
code="""
line_source.data = {'x': [], 'y': []};
line_source.change.emit();
""")
reset_button.js_on_event("button_click", reset_callback)
buffer = io.BytesIO()
df_table.to_excel(buffer, index=False)
buffer.seek(0)
layout = column(fig, column(real_select, reset_button, data_table))
st.bokeh_chart(layout, use_container_width=True)
st.download_button(
label="Export Table",
data=buffer,
file_name=f"cluster_distances_{model_name}.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
key=f"download_button_excel_{model_name}"
)
def main():
config_style()
tabs = st.tabs(["Donut", "Idefics2"])
with tabs[0]:
st.markdown('<h2 class="sub-title">Donut 🤗</h2>', unsafe_allow_html=True)
run_model("Donut")
with tabs[1]:
st.markdown('<h2 class="sub-title">Idefics2 🤗</h2>', unsafe_allow_html=True)
run_model("Idefics2")
if __name__ == "__main__":
main()
|