File size: 14,857 Bytes
9392036
 
ed8f744
913507e
d966a8e
6b1f66d
 
5498932
 
af68571
6b1f66d
1280fd8
9392036
1280fd8
9392036
2ee3fae
9392036
 
 
 
1280fd8
 
913507e
574aa10
6ee3759
574aa10
6ee3759
 
 
574aa10
6ee3759
f872421
 
6b1f66d
89ffe36
 
 
6b1f66d
 
 
 
 
 
 
 
 
89ffe36
 
6b1f66d
 
 
 
 
89ffe36
 
 
f872421
6b1f66d
f872421
ed8f744
f872421
 
 
 
 
ed8f744
f872421
6b1f66d
 
ed8f744
6ee3759
 
 
 
 
ed8f744
 
 
6b1f66d
6ee3759
 
6b1f66d
 
6ee3759
ed8f744
 
6b1f66d
6ee3759
6b1f66d
ed8f744
6b1f66d
 
 
 
 
 
ed8f744
f872421
6b1f66d
 
 
 
 
ed8f744
6b1f66d
d966a8e
6b1f66d
 
 
 
 
 
 
f872421
6b1f66d
f872421
6ee3759
 
ed8f744
6b1f66d
 
ed8f744
6b1f66d
 
 
 
f872421
6b1f66d
 
d966a8e
6b1f66d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f872421
 
ed8f744
f872421
6b1f66d
 
ed8f744
6b1f66d
ed8f744
 
 
 
 
6b1f66d
 
ed8f744
6b1f66d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed8f744
f872421
89ffe36
 
 
 
69db70c
 
 
 
 
 
 
 
 
89ffe36
 
 
 
 
6b1f66d
89ffe36
 
 
 
 
 
 
ed8f744
6b1f66d
 
89ffe36
 
 
 
 
 
 
f872421
ed8f744
6b1f66d
 
 
 
 
 
 
 
 
89ffe36
6b1f66d
89ffe36
 
d966a8e
ed8f744
 
 
6b1f66d
ed8f744
 
6b1f66d
 
 
 
 
 
 
ed8f744
6b1f66d
ed8f744
 
 
 
 
6b1f66d
ed8f744
6b1f66d
ed8f744
6b1f66d
ed8f744
6b1f66d
ed8f744
 
6b1f66d
ed8f744
 
 
 
 
5498932
6b1f66d
d966a8e
6b1f66d
d966a8e
 
 
6b1f66d
af68571
 
 
6b1f66d
08f9513
 
6b1f66d
af68571
69db70c
af68571
08f9513
 
 
af68571
 
89ffe36
 
 
 
69db70c
89ffe36
 
69db70c
89ffe36
6ee3759
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import streamlit as st
import pandas as pd
import numpy as np
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource, DataTable, TableColumn, CustomJS, Select, Button
from bokeh.layouts import column
from bokeh.palettes import Reds9, Blues9, Oranges9, Purples9
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import io
import ot

TOOLTIPS = """
<div>
    <div>
        <img src="@img{safe}" style="width:128px; height:auto; float: left; margin: 0px 15px 15px 0px;" alt="@img" border="2"></img>
    </div>
    <div>
        <span style="font-size: 17px; font-weight: bold;">@label</span>
    </div>
</div>
"""

def config_style():
    st.markdown("""
        <style>
        .main-title { font-size: 50px; color: #4CAF50; text-align: center; }
        .sub-title { font-size: 30px; color: #555; }
        .custom-text { font-size: 18px; line-height: 1.5; }
        </style>
    """, unsafe_allow_html=True)
    st.markdown('<h1 class="main-title">Merit Embeddings 🎒📃🏆</h1>', unsafe_allow_html=True)

# Carga los datos y asigna versiones de forma uniforme
def load_embeddings(model):
    if model == "Donut":
        df_real = pd.read_csv("data/donut_de_Rodrigo_merit_secret_all_embeddings.csv")
        df_seq  = pd.read_csv("data/donut_de_Rodrigo_merit_es-digital-seq_embeddings.csv")
        df_line = pd.read_csv("data/idefics2_de_Rodrigo_merit_es-digital-seq_embeddings.csv")
        df_real["version"] = "real"
        df_seq["version"] = "synthetic"
        df_line["version"] = "synthetic"
        # Usamos un identificador en la columna 'source' para diferenciarlos
        df_seq["source"] = "es-digital-seq"
        df_line["source"] = "es-digital-line-degradation-seq"
        return {"real": df_real, "synthetic": pd.concat([df_seq, df_line], ignore_index=True)}
    elif model == "Idefics2":
        df_real = pd.read_csv("data/idefics2_de_Rodrigo_merit_secret_britanico_embeddings.csv")
        df_seq  = pd.read_csv("data/idefics2_de_Rodrigo_merit_es-digital-seq_embeddings.csv")
        df_real["version"] = "real"
        df_seq["version"] = "synthetic"
        df_seq["source"] = "es-digital-seq"
        return {"real": df_real, "synthetic": df_seq}
    else:
        st.error("Modelo no reconocido")
        return None

# Selección de reducción dimensional
def reducer_selector(df_combined, embedding_cols):
    reduction_method = st.selectbox("Select Dimensionality Reduction Method:", options=["PCA", "t-SNE"])
    all_embeddings = df_combined[embedding_cols].values
    if reduction_method == "PCA":
        reducer = PCA(n_components=2)
    else:
        reducer = TSNE(n_components=2, random_state=42, perplexity=30, learning_rate=200)
    return reducer.fit_transform(all_embeddings)

# Función genérica para agregar datos al gráfico
def add_dataset_to_fig(fig, df, selected_labels, marker, color_mapping, group_label):
    renderers = {}
    for label in selected_labels:
        subset = df[df['label'] == label]
        if subset.empty:
            continue
        source = ColumnDataSource(data=dict(
            x=subset['x'],
            y=subset['y'],
            label=subset['label'],
            img=subset.get('img', "")
        ))
        color = color_mapping[label]
        # Se añade el identificador de la fuente en la leyenda
        legend_label = f"{label} ({group_label})"
        if marker == "circle":
            r = fig.circle('x', 'y', size=10, source=source,
                           fill_color=color, line_color=color,
                           legend_label=legend_label)
        elif marker == "square":
            r = fig.square('x', 'y', size=10, source=source,
                           fill_color=color, line_color=color,
                           legend_label=legend_label)
        elif marker == "triangle":
            r = fig.triangle('x', 'y', size=12, source=source,
                             fill_color=color, line_color=color,
                             legend_label=legend_label)
        renderers[label + f" ({group_label})"] = r
    return renderers

# Asigna paletas de colores de forma genérica para cada grupo (real y para cada fuente sintética)
def get_color_maps(unique_subsets):
    color_map = {}
    # Real
    num_real = len(unique_subsets["real"])
    red_palette = Reds9[:num_real] if num_real <= 9 else (Reds9 * ((num_real // 9) + 1))[:num_real]
    color_map["real"] = {label: red_palette[i] for i, label in enumerate(sorted(unique_subsets["real"]))}
    
    # Synthetic: vamos a separar por fuente (source) basándonos en la lista completa de etiquetas
    # Suponemos que en la columna "source" se encuentran los identificadores
    synthetic_labels = sorted(unique_subsets["synthetic"])
    # Aquí usamos una sola paleta para todos, pero se podría distinguir según la fuente si se quiere
    blue_palette = Blues9[:len(synthetic_labels)] if len(synthetic_labels) <= 9 else (Blues9 * ((len(synthetic_labels) // 9) + 1))[:len(synthetic_labels)]
    color_map["synthetic"] = {label: blue_palette[i] for i, label in enumerate(synthetic_labels)}
    return color_map

# Separa los datos reducidos en "real" y "synthetic" y extrae los subsets (clusters)
def split_versions(df_combined, reduced):
    df_combined['x'] = reduced[:, 0]
    df_combined['y'] = reduced[:, 1]
    df_real = df_combined[df_combined["version"] == "real"].copy()
    df_synth = df_combined[df_combined["version"] == "synthetic"].copy()
    # Extraemos los clusters (subset) usando la columna 'label'
    unique_real = sorted(df_real['label'].unique().tolist())
    unique_synth = sorted(df_synth['label'].unique().tolist())
    df_dict = {"real": df_real, "synthetic": df_synth}
    unique_subsets = {"real": unique_real, "synthetic": unique_synth}
    return df_dict, unique_subsets

# Crea el gráfico; se tratan de forma uniforme ambos conjuntos sintéticos
def create_figure(dfs, unique_subsets, color_maps):
    fig = figure(width=400, height=400, tooltips=TOOLTIPS, title="")
    real_renderers = add_dataset_to_fig(fig, dfs["real"], unique_subsets["real"],
                                        marker="circle", color_mapping=color_maps["real"],
                                        group_label="Real")
    # Aquí separamos los puntos sintéticos según su fuente para asignar diferentes marcadores
    synth_df = dfs["synthetic"]
    # Dividimos por 'source'
    df_seq = synth_df[synth_df["source"] == "es-digital-seq"]
    df_line = synth_df[synth_df["source"] == "es-digital-line-degradation-seq"]
    
    # Extraemos los clusters para cada fuente (si existen)
    unique_seq = sorted(df_seq['label'].unique().tolist())
    unique_line = sorted(df_line['label'].unique().tolist())
    
    seq_renderers = add_dataset_to_fig(fig, df_seq, unique_seq,
                                       marker="square", color_mapping=color_maps["synthetic"],
                                       group_label="es-digital-seq")
    line_renderers = add_dataset_to_fig(fig, df_line, unique_line,
                                        marker="triangle", color_mapping=color_maps["synthetic"],
                                        group_label="es-digital-line-degradation-seq")
    # Combina ambos renderers sintéticos
    synthetic_renderers = {**seq_renderers, **line_renderers}
    
    fig.legend.location = "top_right"
    fig.legend.click_policy = "hide"
    return fig, real_renderers, synthetic_renderers

# Calcula los centros de cada cluster (por grupo)
def calculate_cluster_centers(df, labels):
    centers = {}
    for label in labels:
        subset = df[df['label'] == label]
        if not subset.empty:
            centers[label] = (subset['x'].mean(), subset['y'].mean())
    return centers

# Calcula la distancia Wasserstein de cada subset sintético respecto a cada cluster real (por cluster y global)
def compute_wasserstein_distances_all_synthetics(df_synth, df_real, labels_real):
    distances = {}
    # Para cada cluster en el conjunto sintético (la tabla mostrará todas las etiquetas)
    synth_labels = sorted(df_synth['label'].unique().tolist())
    for label in synth_labels:
        key = f"{label}"
        distances[key] = {}
        cluster = df_synth[df_synth['label'] == label][['x','y']].values
        n = cluster.shape[0]
        weights = np.ones(n) / n
        for real_label in labels_real:
            cluster_real = df_real[df_real['label'] == real_label][['x','y']].values
            m = cluster_real.shape[0]
            weights_real = np.ones(m) / m
            M = ot.dist(cluster, cluster_real, metric='euclidean')
            distances[key][real_label] = ot.emd2(weights, weights_real, M)
    # Distancia global del conjunto sintético a cada cluster real
    key = "Global synthetic"
    distances[key] = {}
    global_synth = df_synth[['x','y']].values
    n_global = global_synth.shape[0]
    weights_global = np.ones(n_global) / n_global
    for real_label in labels_real:
        cluster_real = df_real[df_real['label'] == real_label][['x','y']].values
        m = cluster_real.shape[0]
        weights_real = np.ones(m) / m
        M = ot.dist(global_synth, cluster_real, metric='euclidean')
        distances[key][real_label] = ot.emd2(weights_global, weights_real, M)
    return pd.DataFrame(distances).T

def create_table(df_distances):
    df_table = df_distances.copy()
    df_table.reset_index(inplace=True)
    df_table.rename(columns={'index': 'Synthetic'}, inplace=True)
    min_row = {"Synthetic": "Min."}
    mean_row = {"Synthetic": "Mean"}
    max_row = {"Synthetic": "Max."}
    for col in df_table.columns:
        if col != "Synthetic":
            min_row[col] = df_table[col].min()
            mean_row[col] = df_table[col].mean()
            max_row[col] = df_table[col].max()
    df_table = pd.concat([df_table, pd.DataFrame([min_row, mean_row, max_row])], ignore_index=True)
    source_table = ColumnDataSource(df_table)
    columns = [TableColumn(field='Synthetic', title='Synthetic')]
    for col in df_table.columns:
        if col != 'Synthetic':
            columns.append(TableColumn(field=col, title=col))
    total_height = 30 + len(df_table)*28
    data_table = DataTable(source=source_table, columns=columns, sizing_mode='stretch_width', height=total_height)
    return data_table, df_table, source_table

def run_model(model_name):
    embeddings = load_embeddings(model_name)
    if embeddings is None:
        return
    embedding_cols = [col for col in embeddings["real"].columns if col.startswith("dim_")]
    # Combina todos los DataFrames
    df_combined = pd.concat(list(embeddings.values()), ignore_index=True)
    st.markdown('<h6 class="sub-title">Select Dimensionality Reduction Method</h6>', unsafe_allow_html=True)
    reduction_method = st.selectbox("", options=["t-SNE", "PCA"], key=model_name)
    if reduction_method == "PCA":
        reducer = PCA(n_components=2)
    else:
        reducer = TSNE(n_components=2, random_state=42, perplexity=30, learning_rate=200)
    reduced = reducer.fit_transform(df_combined[embedding_cols].values)
    dfs_reduced, unique_subsets = split_versions(df_combined, reduced)
    
    # Se espera que unique_subsets tenga claves "real" y "synthetic"
    color_maps = get_color_maps(unique_subsets)
    fig, real_renderers, synthetic_renderers = create_figure(dfs_reduced, unique_subsets, color_maps)
    
    centers_real = calculate_cluster_centers(dfs_reduced["real"], unique_subsets["real"])
    
    df_distances = compute_wasserstein_distances_all_synthetics(dfs_reduced["synthetic"], 
                                                                dfs_reduced["real"], 
                                                                unique_subsets["real"])
    data_table, df_table, source_table = create_table(df_distances)
    
    real_subset_names = list(df_table.columns[1:])
    real_select = Select(title="", value=real_subset_names[0], options=real_subset_names)
    reset_button = Button(label="Reset Colors", button_type="primary")
    line_source = ColumnDataSource(data={'x': [], 'y': []})
    fig.line('x', 'y', source=line_source, line_width=2, line_color='black')
    
    # Preparar centros para callback (para trazar líneas entre centros)
    real_centers_js = {k: [v[0], v[1]] for k, v in centers_real.items()}
    
    # Se podría preparar también los centros sintéticos si se requiere
    synthetic_centers = {}
    synth_labels = sorted(dfs_reduced["synthetic"]['label'].unique().tolist())
    for label in synth_labels:
        subset = dfs_reduced["synthetic"][dfs_reduced["synthetic"]['label'] == label]
        synthetic_centers[label] = [subset['x'].mean(), subset['y'].mean()]
    
    callback = CustomJS(args=dict(source=source_table, line_source=line_source,
                                  synthetic_centers=synthetic_centers,
                                  real_centers=real_centers_js,
                                  real_select=real_select),
    code="""
        var selected = source.selected.indices;
        if (selected.length > 0) {
            var idx = selected[0];
            var data = source.data;
            var synth_label = data['Synthetic'][idx];
            var real_label = real_select.value;
            var syn_coords = synthetic_centers[synth_label];
            var real_coords = real_centers[real_label];
            line_source.data = {'x': [syn_coords[0], real_coords[0]], 'y': [syn_coords[1], real_coords[1]]};
            line_source.change.emit();
        } else {
            line_source.data = {'x': [], 'y': []};
            line_source.change.emit();
        }
    """)
    source_table.selected.js_on_change('indices', callback)
    real_select.js_on_change('value', callback)
    
    reset_callback = CustomJS(args=dict(line_source=line_source),
    code="""
        line_source.data = {'x': [], 'y': []};
        line_source.change.emit();
    """)
    reset_button.js_on_event("button_click", reset_callback)
    
    buffer = io.BytesIO()
    df_table.to_excel(buffer, index=False)
    buffer.seek(0)
    
    layout = column(fig, column(real_select, reset_button, data_table))
    st.bokeh_chart(layout, use_container_width=True)
    
    st.download_button(
        label="Export Table",
        data=buffer,
        file_name=f"cluster_distances_{model_name}.xlsx",
        mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
        key=f"download_button_excel_{model_name}"
    )

def main():
    config_style()
    tabs = st.tabs(["Donut", "Idefics2"])
    with tabs[0]:
        st.markdown('<h2 class="sub-title">Donut 🤗</h2>', unsafe_allow_html=True)
        run_model("Donut")
    with tabs[1]:
        st.markdown('<h2 class="sub-title">Idefics2 🤗</h2>', unsafe_allow_html=True)
        run_model("Idefics2")

if __name__ == "__main__":
    main()