Spaces:
Running
Running
File size: 4,434 Bytes
2543f2c f35dc2e 8c853ac 097fb1d 2543f2c b9e4088 88a1e0a 2365ad3 88a1e0a 2543f2c 88a1e0a cad9104 f35dc2e cad9104 1c68ea4 9c119e5 cad9104 f35dc2e 2365ad3 f35dc2e 2365ad3 88a1e0a 9c119e5 14cf527 9c119e5 f35dc2e ca87238 2aca398 9c119e5 29c5484 2aca398 f35dc2e 88a1e0a f35dc2e b9e4088 c4c3804 b9e4088 c4c3804 b9e4088 c4c3804 b9e4088 c4c3804 b9e4088 c4c3804 14cf527 c4c3804 b9e4088 14cf527 1bd73ac 14cf527 1bd73ac 2543f2c 88a1e0a 1bd73ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import gradio as gr
import os
from deep_translator import GoogleTranslator
from huggingface_hub import InferenceClient
# دریافت توکن از محیط
HF_TOKEN = os.environ.get("HUGGINGFACE_API_TOKEN")
if not HF_TOKEN:
raise RuntimeError("Missing HUGGINGFACE_API_TOKEN secret")
hf_client = InferenceClient(token=HF_TOKEN)
def generate_topics(field, major, keywords, audience, level):
if not all([field.strip(), major.strip(), keywords.strip(), audience.strip()]):
return "<div style='color: red;'>❌ لطفاً همه فیلدها را پر کنید.</div>"
base_prompt = (
f"Suggest 3 academic thesis topics based on the following:\n"
f"Field: {field}\n"
f"Specialization: {major}\n"
f"Keywords: {keywords}\n"
f"Target Audience: {audience}\n"
f"Level: {level}\n"
)
extra = (
"Since this is a doctoral-level project, focus on proposing theoretical frameworks, "
"advanced modeling approaches, and in-depth methodological contributions."
if level == "دکتری"
else
"Focus on practical and applied thesis topics suitable for a master's level student."
)
prompt = base_prompt + extra
try:
response = hf_client.chat.completions.create(
model="deepseek-ai/DeepSeek-Prover-V2-671B",
messages=[
{"role": "system", "content": "You are an academic advisor assistant."},
{"role": "user", "content": prompt}
],
temperature=0.7,
max_tokens=512
)
english_output = response.choices[0].message.content.strip()
try:
translated = GoogleTranslator(source='en', target='fa').translate(english_output)
except:
translated = english_output
items = [f"<li>{line}</li>" for line in translated.split("\n") if line.strip()]
translated_html = "<ol>" + "".join(items) + "</ol>"
return (
"<div>"
f"{translated_html}"
"<br><br>📢 برای مشاوره و راهنمایی تخصصی با گروه مشاوره کاسپین تماس بگیرید:<br>"
"<strong>021-88252497</strong>"
"</div>"
)
except Exception as e:
return f"<div style='color: red;'>❌ خطا در تماس با مدل DeepSeek: {e}</div>"
# CSS سفارشی
custom_css = """
/* پسزمینه کلی سفید و متن مشکی */
body, .gradio-container {
background-color: white !important;
color: black !important;
}
/* تیتر Markdown */
.gradio-container .markdown h2 {
color: black !important;
}
/* استایل ورودیها و دکمهها */
input, textarea, select, button {
background-color: white !important;
color: black !important;
border: 1px solid #ccc !important;
}
/* باکس خروجی: پسزمینه روشن و حاشیه مشکی */
#output_box {
background-color: #f9f9f9 !important;
color: black !important;
border: 1px solid #333 !important;
padding: 15px;
border-radius: 4px;
}
/* برداشتن تم تیره Gradio */
.gradio-container.dark {
background-color: white !important;
color: black !important;
}
"""
with gr.Blocks(css=custom_css, theme="default") as app:
# لوگوی شما
gr.Image(value="logo.png", interactive=False, show_label=False)
# تیتر
gr.Markdown("## 🎓 پیشنهادگر موضوع پایاننامه کاسپین")
with gr.Row():
with gr.Column():
field = gr.Textbox(label="رشته", placeholder="مثال: کامپیوتر")
major = gr.Textbox(label="گرایش", placeholder="مثال: هوش مصنوعی")
keywords = gr.Textbox(label="کلیدواژهها", placeholder="مثال: یادگیری عمیق، بینایی ماشین")
audience = gr.Textbox(label="جامعه هدف", placeholder="مثال: دانشجویان دکتری")
level = gr.Dropdown(["کارشناسی ارشد", "دکتری"], label="مقطع")
submit = gr.Button("🎯 پیشنهاد موضوع")
with gr.Column():
output = gr.HTML(elem_id="output_box")
submit.click(
fn=generate_topics,
inputs=[field, major, keywords, audience, level],
outputs=output
)
if __name__ == "__main__":
app.launch()
|