Spaces:
Running
Running
File size: 18,415 Bytes
32dbb08 5dd7582 61542b8 32dbb08 61542b8 32dbb08 5dd7582 32dbb08 6a05116 06e8556 32dbb08 ce5dc65 32dbb08 ce5dc65 32dbb08 2817fcb 32dbb08 2817fcb 32dbb08 985478d cd60bd0 2817fcb cd60bd0 c57e76c 32dbb08 61542b8 5dd7582 f585ea0 32dbb08 53c7136 32dbb08 9fd4b06 06e8556 9fd4b06 06e8556 85b93b7 7d21286 a90efab 49218db ad392eb dd7b655 ad392eb c50d688 7d21286 0c85aa2 dd7b655 cc32e03 7d21286 c50d688 dd7b655 7d21286 dd7b655 7d21286 49218db cc32e03 c50d688 dd7b655 cc32e03 c50d688 cc32e03 c50d688 dd7b655 7d21286 49218db cc32e03 c50d688 dd7b655 cc32e03 dd7b655 c50d688 ad392eb dd7b655 ad392eb dd7b655 cc32e03 ad392eb 0c85aa2 ad392eb dd7b655 49218db ad392eb cc32e03 ad392eb 9fd4b06 c50d688 06e8556 2817fcb 32dbb08 2817fcb 28169bd 2817fcb 531005f 2817fcb 28169bd 2817fcb 32dbb08 2817fcb 28169bd 32dbb08 5dd7582 32dbb08 5dd7582 32dbb08 531005f 5dd7582 32dbb08 4493851 2817fcb 4493851 06e8556 32dbb08 9fd4b06 32dbb08 9fd4b06 06e8556 53c7136 f585ea0 e46e945 f585ea0 32dbb08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
import json
import gzip
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from io import StringIO
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
BENCHMARK_COLS_MULTIMODAL,
BENCHMARK_COLS_MIB_SUBGRAPH,
BENCHMARK_COLS_MIB_CAUSALGRAPH,
COLS,
COLS_MIB_SUBGRAPH,
COLS_MIB_CAUSALGRAPH,
COLS_MULTIMODAL,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
AutoEvalColumn_mib_subgraph,
AutoEvalColumn_mib_causalgraph,
fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID, TOKEN, RESULTS_REPO_MIB_SUBGRAPH, EVAL_RESULTS_MIB_SUBGRAPH_PATH, RESULTS_REPO_MIB_CAUSALGRAPH, EVAL_RESULTS_MIB_CAUSALGRAPH_PATH
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_leaderboard_df_mib_subgraph, get_leaderboard_df_mib_causalgraph
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
# print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
# print(RESULTS_REPO_MIB_SUBGRAPH)
snapshot_download(
repo_id=RESULTS_REPO_MIB_SUBGRAPH, local_dir=EVAL_RESULTS_MIB_SUBGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
# print(RESULTS_REPO_MIB_CAUSALGRAPH)
snapshot_download(
repo_id=RESULTS_REPO_MIB_CAUSALGRAPH, local_dir=EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
LEADERBOARD_DF_MIB_SUBGRAPH = get_leaderboard_df_mib_subgraph(EVAL_RESULTS_MIB_SUBGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_SUBGRAPH, BENCHMARK_COLS_MIB_SUBGRAPH)
# LEADERBOARD_DF_MIB_CAUSALGRAPH = get_leaderboard_df_mib_causalgraph(EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_CAUSALGRAPH, BENCHMARK_COLS_MIB_CAUSALGRAPH)
# In app.py, modify the LEADERBOARD initialization
LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED = get_leaderboard_df_mib_causalgraph(
EVAL_RESULTS_MIB_CAUSALGRAPH_PATH,
EVAL_REQUESTS_PATH,
COLS_MIB_CAUSALGRAPH,
BENCHMARK_COLS_MIB_CAUSALGRAPH
)
# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
# LEADERBOARD_DF_MULTIMODAL = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS_MULTIMODAL, BENCHMARK_COLS_MULTIMODAL)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
# def init_leaderboard_mib_subgraph(dataframe, track):
# # print(f"init_leaderboard_mib: dataframe head before loc is {dataframe.head()}\n")
# if dataframe is None or dataframe.empty:
# raise ValueError("Leaderboard DataFrame is empty or None.")
# # filter for correct track
# # dataframe = dataframe.loc[dataframe["Track"] == track]
# # print(f"init_leaderboard_mib: dataframe head after loc is {dataframe.head()}\n")
# return Leaderboard(
# value=dataframe,
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
# select_columns=SelectColumns(
# default_selection=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.displayed_by_default],
# cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.never_hidden],
# label="Select Columns to Display:",
# ),
# search_columns=["Method"], # Changed from AutoEvalColumn_mib_subgraph.model.name to "Method"
# hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden],
# bool_checkboxgroup_label="Hide models",
# interactive=False,
# )
from src.about import TasksMib_Subgraph
# def init_leaderboard_mib_subgraph(dataframe, track):
# """Initialize the subgraph leaderboard with grouped column selection by benchmark."""
# if dataframe is None or dataframe.empty:
# raise ValueError("Leaderboard DataFrame is empty or None.")
# print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
# # Create groups of columns by benchmark
# benchmark_groups = []
# # For each benchmark in our TasksMib_Subgraph enum...
# for task in TasksMib_Subgraph:
# benchmark = task.value.benchmark
# # Get all valid columns for this benchmark's models
# benchmark_cols = [
# f"{benchmark}_{model}"
# for model in task.value.models
# if f"{benchmark}_{model}" in dataframe.columns
# ]
# if benchmark_cols: # Only add if we have valid columns
# benchmark_groups.append(benchmark_cols)
# print(f"\nBenchmark group for {benchmark}:", benchmark_cols)
# # Create model groups as well
# model_groups = []
# all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
# # For each unique model...
# for model in all_models:
# # Get all valid columns for this model across benchmarks
# model_cols = [
# f"{task.value.benchmark}_{model}"
# for task in TasksMib_Subgraph
# if model in task.value.models
# and f"{task.value.benchmark}_{model}" in dataframe.columns
# ]
# if model_cols: # Only add if we have valid columns
# model_groups.append(model_cols)
# print(f"\nModel group for {model}:", model_cols)
# # Combine all groups
# all_groups = benchmark_groups + model_groups
# # Flatten groups for default selection (show everything initially)
# all_columns = [col for group in all_groups for col in group]
# print("\nAll available columns:", all_columns)
# return Leaderboard(
# value=dataframe,
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
# select_columns=SelectColumns(
# default_selection=all_columns, # Show all columns initially
# label="Select Results:"
# ),
# search_columns=["Method"],
# hide_columns=[],
# interactive=False,
# )
def init_leaderboard_mib_subgraph(dataframe, track):
"""Initialize the subgraph leaderboard with display names for better readability."""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
# First, create our display name mapping
# This is like creating a translation dictionary between internal names and display names
display_mapping = {}
for task in TasksMib_Subgraph:
for model in task.value.models:
field_name = f"{task.value.benchmark}_{model}"
display_name = f"{task.value.benchmark}({model})"
display_mapping[field_name] = display_name
# Now when creating benchmark groups, we'll use display names
benchmark_groups = []
for task in TasksMib_Subgraph:
benchmark = task.value.benchmark
benchmark_cols = [
display_mapping[f"{benchmark}_{model}"] # Use display name from our mapping
for model in task.value.models
if f"{benchmark}_{model}" in dataframe.columns
]
if benchmark_cols:
benchmark_groups.append(benchmark_cols)
print(f"\nBenchmark group for {benchmark}:", benchmark_cols)
# Similarly for model groups
model_groups = []
all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
for model in all_models:
model_cols = [
display_mapping[f"{task.value.benchmark}_{model}"] # Use display name
for task in TasksMib_Subgraph
if model in task.value.models
and f"{task.value.benchmark}_{model}" in dataframe.columns
]
if model_cols:
model_groups.append(model_cols)
print(f"\nModel group for {model}:", model_cols)
# Combine all groups using display names
all_groups = benchmark_groups + model_groups
all_columns = [col for group in all_groups for col in group]
# Important: We need to rename our DataFrame columns to match display names
renamed_df = dataframe.rename(columns=display_mapping)
return Leaderboard(
value=renamed_df, # Use DataFrame with display names
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
select_columns=SelectColumns(
default_selection=all_columns, # Now contains display names
label="Select Results:"
),
search_columns=["Method"],
hide_columns=[],
interactive=False,
)
# def init_leaderboard_mib_subgraph(dataframe, track):
# """Initialize the subgraph leaderboard with group-based column selection."""
# if dataframe is None or dataframe.empty:
# raise ValueError("Leaderboard DataFrame is empty or None.")
# print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
# # Create selection mapping for benchmark groups
# selection_mapping = {}
# # Create benchmark groups with descriptive names
# for task in TasksMib_Subgraph:
# benchmark = task.value.benchmark
# # Get all columns for this benchmark's models
# benchmark_cols = [
# f"{benchmark}_{model}"
# for model in task.value.models
# if f"{benchmark}_{model}" in dataframe.columns
# ]
# if benchmark_cols:
# # Use a descriptive group name as the key
# group_name = f"Benchmark: {benchmark.upper()}"
# selection_mapping[group_name] = benchmark_cols
# print(f"\n{group_name} maps to:", benchmark_cols)
# # Create model groups with descriptive names
# all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
# for model in all_models:
# # Get all columns for this model across benchmarks
# model_cols = [
# f"{task.value.benchmark}_{model}"
# for task in TasksMib_Subgraph
# if model in task.value.models
# and f"{task.value.benchmark}_{model}" in dataframe.columns
# ]
# if model_cols:
# # Use a descriptive group name as the key
# group_name = f"Model: {model}"
# selection_mapping[group_name] = model_cols
# print(f"\n{group_name} maps to:", model_cols)
# # The selection options are the group names
# selection_options = list(selection_mapping.keys())
# print("\nSelection options:", selection_options)
# return Leaderboard(
# value=dataframe,
# datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
# select_columns=SelectColumns(
# default_selection=selection_options, # Show all groups by default
# label="Select Benchmark or Model Groups:"
# ),
# search_columns=["Method"],
# hide_columns=[],
# interactive=False,
# )
def init_leaderboard_mib_causalgraph(dataframe, track):
# print("Debugging column issues:")
# print("\nActual DataFrame columns:")
# print(dataframe.columns.tolist())
# print("\nExpected columns for Leaderboard:")
expected_cols = [c.name for c in fields(AutoEvalColumn_mib_causalgraph)]
# print(expected_cols)
# print("\nMissing columns:")
missing_cols = [col for col in expected_cols if col not in dataframe.columns]
# print(missing_cols)
# print("\nSample of DataFrame content:")
# print(dataframe.head().to_string())
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn_mib_causalgraph)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=["Method"],
hide_columns=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.hidden],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def init_leaderboard_mib_causalgraph(dataframe, track):
# print("Debugging column issues:")
# print("\nActual DataFrame columns:")
# print(dataframe.columns.tolist())
# Create only necessary columns
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn_mib_causalgraph)],
select_columns=SelectColumns(
default_selection=["Method"], # Start with just Method column
cant_deselect=["Method"], # Method column should always be visible
label="Select Columns to Display:",
),
search_columns=["Method"],
hide_columns=[],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def init_leaderboard(dataframe, track):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
# filter for correct track
dataframe = dataframe.loc[dataframe["Track"] == track]
# print(f"\n\n\n dataframe is {dataframe}\n\n\n")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def process_json(temp_file):
if temp_file is None:
return {}
# Handle file upload
try:
file_path = temp_file.name
if file_path.endswith('.gz'):
with gzip.open(file_path, 'rt') as f:
data = json.load(f)
else:
with open(file_path, 'r') as f:
data = json.load(f)
except Exception as e:
raise gr.Error(f"Error processing file: {str(e)}")
gr.Markdown("Upload successful!")
return data
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# with gr.TabItem("Strict", elem_id="strict-benchmark-tab-table", id=0):
# leaderboard = init_leaderboard(LEADERBOARD_DF, "strict")
# with gr.TabItem("Strict-small", elem_id="strict-small-benchmark-tab-table", id=1):
# leaderboard = init_leaderboard(LEADERBOARD_DF, "strict-small")
# with gr.TabItem("Multimodal", elem_id="multimodal-benchmark-tab-table", id=2):
# leaderboard = init_leaderboard(LEADERBOARD_DF_MULTIMODAL, "multimodal")
# with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=4):
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# with gr.TabItem("πΆ Submit", elem_id="llm-benchmark-tab-table", id=5):
# with gr.Column():
# with gr.Row():
# gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
# with gr.TabItem("Subgraph", elem_id="subgraph", id=0):
# leaderboard = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph")
with gr.TabItem("Subgraph", elem_id="subgraph", id=0):
# Add description for filters
gr.Markdown("""
### Filtering Options
Use the dropdown menus below to filter results by specific tasks or models.
You can combine filters to see specific task-model combinations.
""")
leaderboard = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph")
# Then modify the Causal Graph tab section
with gr.TabItem("Causal Graph", elem_id="causalgraph", id=1):
with gr.Tabs() as causalgraph_tabs:
with gr.TabItem("Detailed View", id=0):
leaderboard_detailed = init_leaderboard_mib_causalgraph(
LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED,
"Causal Graph"
)
with gr.TabItem("Aggregated View", id=1):
leaderboard_aggregated = init_leaderboard_mib_causalgraph(
LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED,
"Causal Graph"
)
with gr.TabItem("Intervention Averaged", id=2):
leaderboard_averaged = init_leaderboard_mib_causalgraph(
LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED,
"Causal Graph"
)
# with gr.Row():
# with gr.Accordion("π Citation", open=False):
# citation_button = gr.Textbox(
# value=CITATION_BUTTON_TEXT,
# label=CITATION_BUTTON_LABEL,
# lines=20,
# elem_id="citation-button",
# show_copy_button=True,
# )
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.launch(share=True, ssr_mode=False)
|