Spaces:
Sleeping
Sleeping
File size: 14,561 Bytes
1f5cba5 0e29657 4f25f4e 1f5cba5 305d4ff 3563dd6 c927679 4f25f4e 266fff4 9af3089 14fa0cc 0c482eb 2871b51 9450587 0c482eb 0e29657 0c482eb 0e29657 9afd718 e339dd2 0c482eb 838224c 0c482eb 838224c 0c482eb 305d4ff 0c482eb 9af3089 1f5cba5 9017277 1f5cba5 9017277 f74ec57 9017277 a14b206 9017277 0c482eb 9017277 133d76b 9017277 133d76b 9017277 133d76b 9017277 133d76b 9017277 0c482eb 9017277 133d76b 9017277 4f25f4e 9af3089 0e29657 4f25f4e 9af3089 4f25f4e 9af3089 4f25f4e 0e29657 9af3089 7fb0070 4f25f4e 7fb0070 4f25f4e 3872131 4f25f4e 09b1a3d 9af3089 7fb0070 7c5f7b3 9af3089 7fb0070 726938a 7c5f7b3 7fb0070 e339dd2 9af3089 7fb0070 7c5f7b3 9af3089 7c5f7b3 0c482eb 4f25f4e 0c482eb 7c5f7b3 7fb0070 09b1a3d 0c482eb abff174 03df343 abff174 7fb0070 838224c 4f25f4e a59a680 9af3089 a59a680 14fa0cc 9af3089 726938a a59a680 6e69a67 ce34e8f 9017277 6e69a67 ce34e8f 6e69a67 9017277 ce34e8f 9017277 6e69a67 9017277 6e69a67 ce34e8f 6e69a67 ce34e8f 9017277 6e69a67 14fa0cc 6e69a67 ce34e8f 9017277 6e69a67 ce34e8f 6e69a67 9017277 ce34e8f 9017277 6e69a67 9017277 6e69a67 ce34e8f 6e69a67 ce34e8f 9017277 6e69a67 4f25f4e 3872131 4f25f4e 9af3089 3872131 9af3089 3872131 28ad120 3872131 9af3089 3872131 9af3089 3872131 9af3089 3872131 4f25f4e a14b206 4f25f4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
# tools.py
import pandas as pd
from pathlib import Path
import requests
import regex as re
import time
import os
from duckduckgo_search import DDGS
from langchain_core.tools import tool
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# Removed complex safety wrapper - keeping things simple
def _download_file_for_task(task_id: str, ext: str) -> str:
"""
Helper: attempt to GET the remote file for a given task_id.
Saves under ./hf_files/{task_id}.{ext}. Returns the local path if successful,
or an empty string if no file / download failed.
"""
print("reached _download_file_for_task")
os.makedirs("hf_files", exist_ok=True)
local_path = os.path.join("hf_files", f"{task_id}.{ext}")
url = f"{DEFAULT_API_URL}/files/{task_id}"
try:
resp = requests.get(url, timeout=10)
if resp.status_code == 200 and resp.content:
print(f"Downloaded file from {url} to {local_path}")
with open(local_path, "wb") as f:
f.write(resp.content)
return local_path
except Exception:
print(f"Error downloading file from {url} to {local_path}")
pass
# If we get here, either 404 or download error
return ""
@tool
def image_tool(task_id: str) -> str:
"""
Expects: task_id (str) — a valid image task ID.
Returns: image caption from Hugging Face API or error message.
"""
import requests, os
# Try downloading image with one of the allowed extensions
for ext in ("png", "jpg", "jpeg"):
file_path = _download_file_for_task(task_id, ext)
if file_path and os.path.exists(file_path):
break
else:
return f"Error: Image file for task_id '{task_id}' not found."
# Read the image bytes
try:
with open(file_path, "rb") as f:
image_bytes = f.read()
except Exception as e:
return f"Error reading image: {str(e)}"
# Load HF token
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
return "Error: HF_TOKEN not set in environment."
# Use a single reliable model
model = "Salesforce/blip-image-captioning-base"
headers = {"Authorization": f"Bearer {hf_token}"}
try:
response = requests.post(
f"https://api-inference.huggingface.co/models/{model}",
headers=headers,
files={"file": image_bytes},
timeout=30
)
except Exception as e:
return f"Error calling HuggingFace API: {e}"
# Parse response
if response.status_code != 200:
return f"Error from model ({model}): {response.status_code} - {response.text}"
try:
result = response.json()
if isinstance(result, list) and result:
caption = result[0].get("generated_text", "").strip()
elif isinstance(result, dict):
caption = result.get("generated_text", "").strip()
else:
caption = ""
except Exception as e:
return f"Error parsing response: {e}"
if not caption:
return "No caption generated by model."
return f"Image Caption:\n{caption}"
@tool
def excel_tool(task_id: str) -> str:
"""
Downloads <task_id>.xlsx (if any) and returns a stringified list of
records from the specified sheet. No fallback to user-supplied tables.
Expected keys in `task_id`:
• task_id – required (used to download the file)
returns: stringified list of records from the specified sheet
"""
print("reached excel_tool")
sheet = "Sheet1"
local_xlsx = _download_file_for_task(task_id, "xlsx")
if not local_xlsx or not os.path.exists(local_xlsx):
return "Error: Excel file not found for this task."
try:
xls = pd.ExcelFile(local_xlsx)
df = pd.read_excel(
xls,
sheet_name=sheet if sheet and sheet in xls.sheet_names else xls.sheet_names[0]
)
print(f"Excel file read successfully: {str(df.to_dict(orient='records'))}")
return str(df.to_dict(orient="records"))
except Exception as e:
return f"Error reading Excel file: {e}"
import openai
@tool
def audio_transcriber_tool(task_id: str) -> str:
"""
LangGraph tool for transcribing audio via OpenAI's Whisper API.
Expects: task_id is a string
Returns:
"<text or error message>"
Always attempts to download the file for the given path or task ID.
"""
print("reached audio_transcriber_tool")
# Always attempt to download the file, regardless of local existence
local_audio = ""
for ext in ("mp3", "wav", "m4a"):
candidate = _download_file_for_task(task_id, ext)
if candidate:
local_audio = candidate
break
if not local_audio or not os.path.exists(local_audio):
return "Error: No audio file found (download failed)."
# Send to OpenAI Whisper
try:
openai.api_key = os.getenv("OPENAI_API_KEY")
if not openai.api_key:
raise RuntimeError("OPENAI_API_KEY is not set in environment.")
with open(local_audio, "rb") as audio_file:
print("reached openai.audio.transcriptions.create")
response = openai.audio.transcriptions.create(
model="whisper-1",
file=audio_file,
)
print("reached response")
text = response.text.strip()
except Exception as e:
text = f"Error during transcription: {e}"
print(f"Transcripted as transcript: {text}")
return text
# tools.py
import re
import requests
@tool
def wikipedia_search_tool(wiki_query: str) -> str:
"""
Searches Wikipedia for the given query and returns the first 5 pages.
Expects: wiki_query is a non‐empty string.
Returns: text summary of first matching page or an error message>"
If no valid wiki_query is provided, returns {}.
"""
print(f"DEBUG: reached wikipedia_search_tool with query: {wiki_query}")
try:
docs = WikipediaLoader(query=wiki_query, load_max_docs=3).load() # Reduced from 5 to 3
print(f"DEBUG: WikipediaLoader returned {len(docs)} documents")
result = ""
counter = 1
for doc in docs:
print(f"DEBUG: Processing Wikipedia document {counter}")
print(f"DEBUG: Document metadata: {doc.metadata}")
print(f"DEBUG: Document content length: {len(doc.page_content)}")
# Handle different metadata structures
title = "Unknown Title"
if hasattr(doc, 'metadata') and doc.metadata:
# Try different possible title keys
if 'title' in doc.metadata:
title = doc.metadata['title']
elif 'Title' in doc.metadata:
title = doc.metadata['Title']
elif 'source' in doc.metadata:
title = doc.metadata['source']
else:
# Use first available key as title
if doc.metadata:
first_key = list(doc.metadata.keys())[0]
title = f"Wikipedia: {doc.metadata[first_key]}"
print(f"DEBUG: Using Wikipedia title: {title}")
# Trim content to key information only (reduced from 2000 to 800 characters)
content = doc.page_content[:800] if len(doc.page_content) > 800 else doc.page_content
# Add document but keep it concise
result += f"\n\nWikipedia Result {counter}: {title}\nSummary: {content}..."
counter += 1
# Stop after 2 documents to keep response manageable
if counter > 2:
break
if not result.strip():
return "No Wikipedia results found for the given query. [END_OF_SEARCH]"
# Add clear end marker
result += "\n\n[END_OF_SEARCH] - Wikipedia search complete. Use this information to answer the question."
print(f"DEBUG: Final Wikipedia result length: {len(result)}")
return result
except Exception as e:
error_msg = f"Error during Wikipedia search: {str(e)} [END_OF_SEARCH]"
print(f"DEBUG: {error_msg}")
return error_msg
@tool
def arxiv_search_tool(arxiv_query: str) -> str:
"""
Searches Arxiv for the given query and returns the first 5 pages.
Expects: arxiv_query is a non‐empty string.
Returns: text summary of first matching page or an error message>"
"""
print(f"DEBUG: reached arxiv_search_tool with query: {arxiv_query}")
try:
docs = ArxivLoader(query=arxiv_query, load_max_docs=3).load() # Reduced from 5 to 3
print(f"DEBUG: ArxivLoader returned {len(docs)} documents")
result = ""
counter = 1
for doc in docs:
print(f"DEBUG: Processing document {counter}")
print(f"DEBUG: Document metadata: {doc.metadata}")
print(f"DEBUG: Document content length: {len(doc.page_content)}")
# Handle different metadata structures
title = "Unknown Title"
if hasattr(doc, 'metadata') and doc.metadata:
# Try different possible title keys
if 'title' in doc.metadata:
title = doc.metadata['title']
elif 'Title' in doc.metadata:
title = doc.metadata['Title']
elif 'entry_id' in doc.metadata:
title = doc.metadata['entry_id']
elif 'summary' in doc.metadata:
title = f"ArXiv Paper {counter}"
else:
# Use first available key as title
if doc.metadata:
first_key = list(doc.metadata.keys())[0]
title = f"{first_key}: {doc.metadata[first_key]}"
print(f"DEBUG: Using title: {title}")
# Trim content to key information only (reduced from 2000 to 800 characters)
content = doc.page_content[:800] if len(doc.page_content) > 800 else doc.page_content
# Add document but keep it concise
result += f"\n\nArXiv Result {counter}: {title}\nAbstract/Summary: {content}..."
counter += 1
# Stop after 2 documents to keep response manageable
if counter > 2:
break
if not result.strip():
return "No ArXiv results found for the given query. [END_OF_SEARCH]"
# Add clear end marker
result += "\n\n[END_OF_SEARCH] - ArXiv search complete. Use this information to answer the question."
print(f"DEBUG: Final ArXiv result length: {len(result)}")
return result
except Exception as e:
error_msg = f"Error during Arxiv search: {str(e)} [END_OF_SEARCH]"
print(f"DEBUG: {error_msg}")
return error_msg
from langchain_openai import ChatOpenAI
from langchain.schema import SystemMessage, HumanMessage
LLM = ChatOpenAI(model_name="gpt-4.1-mini", temperature=0.2)
@tool
def analyze_code_tool(task_id: str) -> str:
"""
Either task_id OR (file + task_id)
Reads the code (max 400 lines / 10 kB) and asks the LLM for:
• plain-language summary
• list of key functions/classes
• obvious bugs or style smells
Returns that analysis as a string.
"""
print("reached analyze_code_tool")
code_txt = ""
if not task_id:
code_txt = "No code provided."
else:
path = _download_file_for_task(task_id, "py")
if not path:
return "Error: .py file not found for this task."
code_txt = Path(path).read_text(encoding="utf-8", errors="ignore")
# else:
# return "Error: neither snippet nor file provided."
# Truncate for safety
lines = code_txt.splitlines()[:400]
code_sample = "\n".join(lines)[:10_000]
prompt = [
SystemMessage(content="You are a senior Python code reviewer."),
HumanMessage(content=(
"Please analyse the following code. "
"Summarise what it does, list key functions/classes, "
"and point out any obvious bugs, performance issues or style problems.\n\n"
f"```python\n{code_sample}\n```"
"If you can then find the output of the code and return it in the output."
))
]
return LLM.invoke(prompt).content.strip()
# def web_search_tool(state: AgentState) -> AgentState:
# """
# Expects: state["web_search_query"] is a non‐empty string.
# Returns: {"web_search_query": None, "web_search_result": <string>}.
# Retries up to 5 times on either a DuckDuckGo "202 Ratelimit" response or any exception (e.g. timeout).
# """
# print("reached web_search_tool")
# query = state.get("web_search_query", "")
# if not query:
# return {} # nothing to do
# ddg = DDGS()
# max_retries = 5
# result_text = ""
# for attempt in range(1, max_retries + 1):
# try:
# result_text = str(ddg.text(query, max_results=5))
# except Exception as e:
# # Network error or timeout—retry up to max_retries
# if attempt < max_retries:
# print(f"web_search_tool: exception '{e}', retrying in 4 seconds ({attempt}/{max_retries})")
# time.sleep(4)
# continue
# else:
# # Final attempt failed
# return {
# "web_search_query": None,
# "web_search_result": f"Error during DuckDuckGo search: {e}"
# }
# # Check for DuckDuckGo rate‐limit indicator
# if "202 Ratelimit" in result_text:
# if attempt < max_retries:
# print(f"web_search_tool: received '202 Ratelimit', retrying in 4 seconds ({attempt}/{max_retries})")
# time.sleep(4)
# continue
# else:
# # Final attempt still rate‐limited
# break
# # Successful response (no exception and no rate‐limit text)
# break
# return {
# "web_search_query": None,
# "web_search_result": result_text
# }
|