Spaces:
Sleeping
Sleeping
File size: 16,445 Bytes
1f5cba5 0e29657 4f25f4e 1f5cba5 305d4ff 3563dd6 c927679 4f25f4e 266fff4 9af3089 a1dc7ba 1ae0aa0 14fa0cc 0c482eb 2871b51 9450587 0c482eb 0e29657 0c482eb 0e29657 9afd718 e339dd2 0c482eb 838224c 0c482eb 8ae792e 0c482eb 305d4ff 0c482eb 9af3089 1f5cba5 ebf7d5c 1f5cba5 9017277 f74ec57 9017277 a14b206 9017277 0c482eb 9017277 133d76b 9017277 133d76b 9017277 133d76b 9017277 133d76b 9017277 0c482eb 9017277 133d76b 9017277 4f25f4e 9af3089 0e29657 ebf7d5c 9af3089 ebf7d5c 0e29657 9af3089 7fb0070 4f25f4e 7fb0070 4f25f4e 3872131 4f25f4e 09b1a3d 9af3089 7fb0070 ebf7d5c 7fb0070 e339dd2 9af3089 7fb0070 7c5f7b3 9af3089 7c5f7b3 0c482eb 8ae792e 4f25f4e 0c482eb 7c5f7b3 7fb0070 09b1a3d 0c482eb abff174 03df343 8ae792e abff174 7fb0070 838224c 4f25f4e a59a680 9af3089 a59a680 ebf7d5c a1dc7ba ebf7d5c a1dc7ba 919fd15 a59a680 a1dc7ba 919fd15 a1dc7ba 919fd15 a1dc7ba ce34e8f a1dc7ba 919fd15 a1dc7ba 919fd15 a1dc7ba 919fd15 e5782f0 919fd15 a1dc7ba e5782f0 919fd15 ce34e8f e5782f0 919fd15 a1dc7ba 14fa0cc 1ae0aa0 14fa0cc ebf7d5c 14fa0cc 8ae792e ce34e8f 1ae0aa0 8ae792e 1ae0aa0 ce34e8f 1ae0aa0 4f25f4e 3872131 5b43bea 4f25f4e 9af3089 3872131 ebf7d5c 3872131 8ae792e 3872131 9af3089 3872131 8ae792e 3872131 8ae792e 3872131 9af3089 3872131 4f25f4e ebf7d5c 8ae792e ebf7d5c 8ae792e ebf7d5c 8ae792e ebf7d5c 8ae792e ebf7d5c e5782f0 ebf7d5c e5782f0 ebf7d5c e5782f0 919fd15 e5782f0 919fd15 e5782f0 919fd15 e5782f0 919fd15 e5782f0 919fd15 e5782f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
# tools.py
import pandas as pd
from pathlib import Path
import requests
import regex as re
import time
import os
from duckduckgo_search import DDGS
from langchain_core.tools import tool
from langchain_community.document_loaders import ArxivLoader
import arxiv
import fitz # PyMuPDF
import tempfile
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# Removed complex safety wrapper - keeping things simple
def _download_file_for_task(task_id: str, ext: str) -> str:
"""
Helper: attempt to GET the remote file for a given task_id.
Saves under ./hf_files/{task_id}.{ext}. Returns the local path if successful,
or an empty string if no file / download failed.
"""
print("reached _download_file_for_task")
os.makedirs("hf_files", exist_ok=True)
local_path = os.path.join("hf_files", f"{task_id}.{ext}")
url = f"{DEFAULT_API_URL}/files/{task_id}"
try:
resp = requests.get(url, timeout=10)
if resp.status_code == 200 and resp.content:
print(f"\n Downloaded file from {url} to {local_path} \n")
with open(local_path, "wb") as f:
f.write(resp.content)
return local_path
except Exception:
print(f"Error downloading file from {url} to {local_path}")
pass
# If we get here, either 404 or download error
return ""
@tool
def image_tool(task_id: str) -> str:
"""
TOOL NAME: Image Analysis Tool
Purpose: When the user asks about images, photos, or visual content, use this tool to get a description of the image.
Input: A task_id string that identifies the specific image to analyze.
Example usage:
- "What is shown in this image?"
- "Describe the contents of the picture"
- "What objects are visible in the photo?"
"""
import requests, os
# Try downloading image with one of the allowed extensions
for ext in ("png", "jpg", "jpeg"):
file_path = _download_file_for_task(task_id, ext)
if file_path and os.path.exists(file_path):
break
else:
return f"Error: Image file for task_id '{task_id}' not found."
# Read the image bytes
try:
with open(file_path, "rb") as f:
image_bytes = f.read()
except Exception as e:
return f"Error reading image: {str(e)}"
# Load HF token
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
return "Error: HF_TOKEN not set in environment."
# Use a single reliable model
model = "Salesforce/blip-image-captioning-base"
headers = {"Authorization": f"Bearer {hf_token}"}
try:
response = requests.post(
f"https://api-inference.huggingface.co/models/{model}",
headers=headers,
files={"file": image_bytes},
timeout=30
)
except Exception as e:
return f"Error calling HuggingFace API: {e}"
# Parse response
if response.status_code != 200:
return f"Error from model ({model}): {response.status_code} - {response.text}"
try:
result = response.json()
if isinstance(result, list) and result:
caption = result[0].get("generated_text", "").strip()
elif isinstance(result, dict):
caption = result.get("generated_text", "").strip()
else:
caption = ""
except Exception as e:
return f"Error parsing response: {e}"
if not caption:
return "No caption generated by model."
return f"Image Caption:\n{caption}"
@tool
def excel_tool(task_id: str) -> str:
"""
TOOL NAME: Excel Data Analysis Tool
Purpose: When the user asks about data in spreadsheets, tables, or Excel files, use this tool to read and analyze the data.
Input: A task_id string that identifies the specific Excel file to analyze.
Example usage:
- "What data is in this spreadsheet?"
- "Analyze the Excel file contents"
- "Show me the data from the table"
"""
print("reached excel_tool")
sheet = "Sheet1"
local_xlsx = _download_file_for_task(task_id, "xlsx")
if not local_xlsx or not os.path.exists(local_xlsx):
return "Error: Excel file not found for this task."
try:
xls = pd.ExcelFile(local_xlsx)
df = pd.read_excel(
xls,
sheet_name=sheet if sheet and sheet in xls.sheet_names else xls.sheet_names[0]
)
print(f"Excel file read successfully: {str(df.to_dict(orient='records'))}")
return str(df.to_dict(orient="records"))
except Exception as e:
return f"Error reading Excel file: {e}"
import openai
@tool
def audio_transcriber_tool(task_id: str) -> str:
"""
TOOL NAME: Audio Transcription Tool
Purpose: When the user asks about audio files, speech, or wants to know what was said in an audio recording, use this tool.
Input: A task_id string that identifies the specific audio file to transcribe.
Example usage:
- "What is said in this audio file?"
- "Transcribe the speech from the recording"
- "Convert the audio to text"
"""
print("reached audio_transcriber_tool")
# Always attempt to download the file, regardless of local existence
local_audio = ""
for ext in ("mp3", "wav", "m4a"):
candidate = _download_file_for_task(task_id, ext)
if candidate:
local_audio = candidate
break
if not local_audio or not os.path.exists(local_audio):
print("Error: No audio file found (download failed).")
return "Error: No audio file found (download failed)."
# Send to OpenAI Whisper
try:
openai.api_key = os.getenv("OPENAI_API_KEY")
if not openai.api_key:
raise RuntimeError("OPENAI_API_KEY is not set in environment.")
with open(local_audio, "rb") as audio_file:
print("reached openai.audio.transcriptions.create")
response = openai.audio.transcriptions.create(
model="whisper-1",
file=audio_file,
)
# print("reached response")
text = response.text.strip()
except Exception as e:
text = f"Error during transcription: {e}"
print(f"Transcripted as transcript: {text}")
return text
# tools.py
import re
import requests
@tool
def wikipedia_search_tool(wiki_query: str) -> str:
"""
TOOL NAME: Wikipedia Search Tool
Purpose: When the user asks about general knowledge, facts, or wants to know about a specific topic, use this tool.
Input: A string describing the topic to search for on Wikipedia.
Example usage:
- "What is the capital of France?"
- "Find information about quantum computing"
- "What is the history of the internet?"
If no valid wiki_query is provided, returns an empty string.
"""
print("reached wikipedia search tool")
# --- Simple in-memory cache to avoid repeated look-ups in a single session
if not hasattr(wikipedia_search_tool, "_cache"):
wikipedia_search_tool._cache = {}
query = wiki_query.strip()
if not query:
return ""
if query in wikipedia_search_tool._cache:
print("Returning cached Wikipedia result for query:", query)
return wikipedia_search_tool._cache[query]
try:
# 1) Use the MediaWiki API to search for page titles matching the query
search_params = {
"action": "query",
"list": "search",
"srsearch": query,
"format": "json",
"utf8": 1
}
search_resp = requests.get("https://en.wikipedia.org/w/api.php", params=search_params, timeout=10)
search_resp.raise_for_status()
search_data = search_resp.json()
search_results = search_data.get("query", {}).get("search", [])
if not search_results:
msg = f"No Wikipedia page found for '{query}'. [END_OF_SEARCH]"
wikipedia_search_tool._cache[query] = msg
return msg
# 2) Take the first search result's title
first_title = search_results[0].get("title", "")
if not first_title:
msg = "Unexpected format from Wikipedia search. [END_OF_SEARCH]"
wikipedia_search_tool._cache[query] = msg
return msg
# 3) Fetch the page summary for that title via the REST summary endpoint
title_for_url = requests.utils.requote_uri(first_title)
summary_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{title_for_url}"
summary_resp = requests.get(summary_url, timeout=10)
summary_resp.raise_for_status()
summary_data = summary_resp.json()
# 4) Extract either the "extract" field or a fallback message
summary_text = summary_data.get("extract")
if not summary_text:
summary_text = summary_data.get("description", "No summary available.")
result = f"Title: {first_title}\n\n{summary_text}\n\n[END_OF_SEARCH]"
wikipedia_search_tool._cache[query] = result
print("Submitted wiki successfully")
return result
except requests.exceptions.RequestException as e:
print("Wikipedia search error: ", e)
return f"Wikipedia search error: {e} [END_OF_SEARCH]"
except Exception as e:
print("Unexpected error in wikipedia_search_tool: ", e)
return f"Unexpected error in wikipedia_search_tool: {e} [END_OF_SEARCH]"
@tool
def arxiv_search_tool(query: str) -> str:
"""
TOOL NAME: ArXiv Academic Search Tool
Purpose: When the user asks for academic research, scientific papers, or technical information, use this tool.
Input: A string describing the academic topic to search for on ArXiv.
Example usage:
- "Find research papers about machine learning"
- "What are recent studies on climate change?"
- "Search for papers on quantum computing"
"""
print("Reached ArXiv tool, with query = ", query)
try:
# Search arXiv for the top result
search = arxiv.Search(query=query, max_results=1, sort_by=arxiv.SortCriterion.Relevance)
result = next(search.results(), None)
if not result:
print("No arXiv result found")
return "No results found. [END_OF_SEARCH]"
# Download PDF
pdf_url = result.pdf_url
response = requests.get(pdf_url)
response.raise_for_status()
# Save and open PDF
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=True) as tmp:
tmp.write(response.content)
tmp.flush()
doc = fitz.open(tmp.name)
text = ""
for page in doc:
text += page.get_text()
# Clean and trim text
text = " ".join(text.split())
summary = text[:3000] + "..." if len(text) > 3000 else text
return f"Title: {result.title}\n\nSummary:\n{summary}\n\n[END_OF_SEARCH]"
except Exception as e:
return f"Error fetching arXiv content: {e} [END_OF_SEARCH]"
from langchain_openai import ChatOpenAI
from langchain.schema import SystemMessage, HumanMessage
LLM = ChatOpenAI(model_name="gpt-4o-mini", temperature=0.2)
@tool
def analyze_code_tool(task_id: str) -> str:
"""
TOOL NAME: Code Analysis Tool
Purpose: When the user asks about code, programming files, or wants to understand what a script does, use this tool.
Input: A task_id string that identifies the specific code file to analyze.
Example usage:
- "What does this Python code do?"
- "Analyze the code file for bugs"
- "Explain the functions in this script"
"""
print("Reached analyze_code_tool")
code_txt = ""
if not task_id:
code_txt = "No code provided."
else:
path = _download_file_for_task(task_id, "py")
if not path:
print("Error: .py file not found for this task.")
return "Error: .py file not found for this task."
code_txt = Path(path).read_text(encoding="utf-8", errors="ignore")
lines = code_txt.splitlines()
code_sample = "\n".join(lines)
prompt = [
SystemMessage(content="You are a senior Python code reviewer."),
HumanMessage(content=(
"Please analyse the following code. "
"Summarise what it does, list key functions/classes, "
"and point out any obvious bugs, performance issues or style problems.\n\n"
f"```python\n{code_sample}\n```"
"If you can then find the output of the code and return it in the output."
))
]
return LLM.invoke(prompt).content.strip()
# βββββββββββββββββββββββββββ Math Tools βββββββββββββββββββββββββββββββ
@tool
def add_tool(a: float, b: float) -> str:
"""
TOOL NAME: Addition Tool
Purpose: When the user asks to add numbers or perform addition calculations, use this tool.
Input: Two numbers (a and b) to add together.
Example usage:
- "What is 25 + 17?"
- "Add 3.14 and 2.86"
- "Calculate the sum of 100 and 250"
"""
print("Reached add_tool")
result = a + b
return f"Addition result: {a} + {b} = {result}"
@tool
def subtract_tool(a: float, b: float) -> str:
"""
TOOL NAME: Subtraction Tool
Purpose: When the user asks to subtract numbers or perform subtraction calculations, use this tool.
Input: Two numbers (a and b) where b is subtracted from a.
Example usage:
- "What is 50 - 23?"
- "Subtract 15.5 from 40.2"
- "Calculate 1000 minus 347"
"""
print("Reached subtract_tool")
result = a - b
return f"Subtraction result: {a} - {b} = {result}"
@tool
def multiply_tool(a: float, b: float) -> str:
"""
TOOL NAME: Multiplication Tool
Purpose: When the user asks to multiply numbers or perform multiplication calculations, use this tool.
Input: Two numbers (a and b) to multiply together.
Example usage:
- "What is 8 Γ 7?"
- "Multiply 12.5 by 4"
- "Calculate the product of 15 and 20"
"""
print("Reached multiply_tool")
result = a * b
return f"Multiplication result: {a} Γ {b} = {result}"
@tool
def divide_tool(a: float, b: float) -> str:
"""
TOOL NAME: Division Tool
Purpose: When the user asks to divide numbers or perform division calculations, use this tool.
Input: Two numbers (a and b) where a is divided by b.
Example usage:
- "What is 100 Γ· 4?"
- "Divide 75 by 3"
- "Calculate 144 divided by 12"
"""
print("Reached divide_tool")
if b == 0:
return "Division error: Cannot divide by zero"
result = a / b
return f"Division result: {a} Γ· {b} = {result}"
@tool
def web_search_tool(query: str) -> str:
"""
TOOL NAME: Web Search Tool
Purpose: When the user asks for current information, recent news, or topics not covered by Wikipedia, use this tool.
Input: A string describing what to search for on the web.
"""
print("reached web_search_tool")
if not hasattr(web_search_tool, "_cache"):
web_search_tool._cache = {}
query = query.strip()
if not query:
return "No search query provided."
if query in web_search_tool._cache:
print("Returning cached web search result for query:", query)
return web_search_tool._cache[query]
ddg = DDGS()
max_retries = 5
result_text = ""
for attempt in range(1, max_retries + 1):
try:
result_text = str(ddg.text(query, max_results=5))
except Exception as e:
if attempt < max_retries:
print(f"web_search_tool: exception '{e}', retrying in 4 seconds ({attempt}/{max_retries})")
time.sleep(4)
continue
else:
return f"Error during DuckDuckGo search: {e} [END_OF_SEARCH]"
if "202 Ratelimit" in result_text:
if attempt < max_retries:
print(f"web_search_tool: received '202 Ratelimit', retrying in 4 seconds ({attempt}/{max_retries})")
time.sleep(4)
continue
else:
break
break # Successful
result_text += "\n\n[END_OF_SEARCH]"
web_search_tool._cache[query] = result_text
print("Submitted web search successfully")
return result_text |