Spaces:
Running
Running
File size: 8,851 Bytes
85c36de 942bf87 51a3749 ea9a1bf e199881 51a3749 248a61c e199881 8bc43cc 942bf87 248a61c e199881 11e1095 dc9275e 3b84715 c63f76d aa6838a 4d0770a 9eb7a80 c63f76d 9eb7a80 bee2eef aa6838a bee2eef c63f76d 8319384 bee2eef 8319384 c63f76d f3b700a 4d0770a f3b700a c63f76d f3b700a 7d97f16 f3b700a c63f76d 9748994 85c36de 248a61c 9f51e97 7d97f16 81bcfb3 fb0b33c c9a939f 81bcfb3 0c1f1e9 25d4105 0c1f1e9 01617d1 0c1f1e9 01617d1 0c1f1e9 01617d1 0c1f1e9 01617d1 0c1f1e9 01617d1 0c1f1e9 357b75d 85c36de 357b75d 85c36de 357b75d 85c36de 357b75d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import gradio as gr
import joblib
import numpy as np
import pandas as pd
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC
from sklearn.preprocessing import MinMaxScaler
# Load model and scaler
model = joblib.load("RF.joblib")
scaler = joblib.load("norm (4).joblib")
# Feature list (KEEP THIS CONSISTENT)
selected_features = [
"_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
"_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001",
"_PolarizabilityD2001", "_PolarizabilityD3001", "_SolventAccessibilityD1001",
"_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1001",
"_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001",
"_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001",
"_PolarityD1050", "_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001",
"_NormalizedVDWVD2001", "_NormalizedVDWVD2025", "_NormalizedVDWVD2050", "_NormalizedVDWVD3001",
"_HydrophobicityD1001", "_HydrophobicityD2001", "_HydrophobicityD3001", "_HydrophobicityD3025",
"A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V",
"AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL",
"HC", "IA", "IL", "IV", "LA", "LC", "LE", "LI", "LT", "LV", "KC", "MA",
"MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV",
"MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4",
"GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26",
"GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29",
"GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26",
"GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29",
"GearyAuto_AvFlexibility30", "GearyAuto_Polarizability22", "GearyAuto_Polarizability24",
"GearyAuto_Polarizability25", "GearyAuto_Polarizability27", "GearyAuto_Polarizability28",
"GearyAuto_Polarizability29", "GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24",
"GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30", "GearyAuto_ResidueASA21",
"GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24",
"GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24",
"GearyAuto_ResidueVol25", "GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28",
"GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30", "GearyAuto_Steric18",
"GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28",
"GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25",
"GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28",
"GearyAuto_Mutability29", "GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5",
"APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13", "APAAC15", "APAAC18", "APAAC19",
"APAAC24"
]
def extract_features(sequence):
all_features_dict = {}
# Calculate all dipeptide features
dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
# Add only the first 420 features to the dictionary
first_420_keys = list(dipeptide_features.keys())[:420] # Get the first 420 keys
filtered_dipeptide_features = {key: dipeptide_features[key] for key in first_420_keys}
ctd_features = CTD.CalculateCTD(sequence)
auto_features = Autocorrelation.CalculateAutoTotal(sequence)
pseudo_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9)
all_features_dict.update(ctd_features)
all_features_dict.update(filtered_dipeptide_features)
all_features_dict.update(auto_features)
all_features_dict.update(pseudo_features)
# Convert all features to DataFrame
feature_df_all = pd.DataFrame([all_features_dict])
# Normalize ALL features
normalized_feature_array = scaler.transform(feature_df_all.values) # Normalize the numpy array
normalized_feature_df = pd.DataFrame(normalized_feature_array, columns=feature_df_all.columns) # Convert back to DataFrame with original column names
# Select features AFTER normalization
feature_df_selected = normalized_feature_df[selected_features].copy()
feature_df_selected = feature_df_selected.fillna(0) # Fill missing if any after selection (though unlikely now)
feature_array = feature_df_selected.values
return feature_array
def predict(sequence):
"""Predicts whether the input sequence is an AMP."""
features = extract_features(sequence)
if isinstance(features, str) and features.startswith("Error:"):
return features
prediction = model.predict(features)[0]
probabilities = model.predict_proba(features)[0]
if prediction == 0:
return f"{probabilities[0] * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)"
else:
return f"{probabilities[1] * 100:.2f}% chance of being Non-AMP"
def predictmic(sequence):
import torch
from transformers import BertTokenizer, BertModel
import numpy as np
import joblib # ✅ Use joblib instead of pickle
from math import expm1
# === Load ProtBert model ===
tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False)
model = BertModel.from_pretrained("Rostlab/prot_bert")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device).eval()
# === Preprocess input sequence ===
sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
if len(sequence) < 10:
return {"Error": "Sequence too short or invalid. Must contain at least 10 valid amino acids."}
# === Tokenize & embed using mean pooling ===
seq_spaced = ' '.join(list(sequence))
tokens = tokenizer(seq_spaced, return_tensors="pt", padding='max_length', truncation=True, max_length=512)
tokens = {k: v.to(device) for k, v in tokens.items()}
with torch.no_grad():
outputs = model(**tokens)
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy().reshape(1, -1) # Shape: (1, 1024)
# === MIC models and scalers for each bacterium ===
bacteria_config = {
"E.coli": {
"model": "coli_xgboost_model.pkl",
"scaler": "coli_scaler.pkl",
"pca": None
},
"S.aureus": {
"model": "aur_xgboost_model.pkl",
"scaler": "aur_scaler.pkl",
"pca": None
},
"P.aeruginosa": {
"model": "arg_xgboost_model.pkl",
"scaler": "arg_scaler.pkl",
"pca": None
},
"K.Pneumonia": {
"model": "pne_mlp_model.pkl",
"scaler": "pne_scaler.pkl",
"pca": "pne_pca" # Ensure this PCA file was also saved using joblib
}
}
mic_results = {}
for bacterium, cfg in bacteria_config.items():
try:
# === Load scaler and transform ===
scaler = joblib.load(cfg["scaler"])
scaled = scaler.transform(embedding)
# === Apply PCA if exists ===
if cfg["pca"] is not None:
pca = joblib.load(cfg["pca"])
transformed = pca.transform(scaled)
else:
transformed = scaled
# === Load model and predict ===
mic_model = joblib.load(cfg["model"])
mic_log = mic_model.predict(transformed)[0]
mic = round(expm1(mic_log), 3) # Inverse of log1p used in training
mic_results[bacterium] = mic
except Exception as e:
mic_results[bacterium] = f"Error: {str(e)}"
return mic_results
def full_prediction(sequence):
# AMP prediction
features = extract_features(sequence)
if isinstance(features, str) and features.startswith("Error:"):
return "Error", 0.0, {}
prediction = model.predict(features)[0]
probabilities = model.predict_proba(features)[0]
amp_result = "Antimicrobial Peptide (AMP)" if prediction == 0 else "Non-AMP"
confidence = round(probabilities[0 if prediction == 0 else 1] * 100, 2)
# MIC prediction
mic_values = predictmic(sequence)
return amp_result, f"{confidence}%", mic_values
import gradio as gr
iface = gr.Interface(
fn=full_prediction,
inputs=gr.Textbox(label="Enter Protein Sequence"),
outputs=[
gr.Label(label="AMP Classification"),
gr.Label(label="Confidence"),
gr.JSON(label="Predicted MIC (µg/mL) for Each Bacterium")
],
title="AMP & MIC Predictor",
description="Enter an amino acid sequence (e.g., FLPVLAGGL) to predict AMP class and MIC values across bacteria."
)
iface.launch(share=True)
|