File size: 5,628 Bytes
85c36de
942bf87
51a3749
ea9a1bf
e199881
51a3749
 
248a61c
e199881
8bc43cc
942bf87
248a61c
 
e199881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e1095
dc9275e
3b84715
7d97f16
 
8319384
c63f76d
aa6838a
4d0770a
6f19eaa
c63f76d
6f19eaa
 
 
 
 
 
248a61c
aa6838a
8319384
c63f76d
aa6838a
8319384
c63f76d
7d97f16
8319384
c63f76d
a52fdd6
1b75bda
4d0770a
 
1b75bda
4d0770a
 
c63f76d
10a71e4
7d97f16
a52fdd6
1b75bda
7d97f16
a52fdd6
c63f76d
9748994
85c36de
248a61c
9f51e97
7d97f16
 
81bcfb3
1b75bda
 
c9a939f
81bcfb3
 
 
 
 
248a61c
85c36de
 
 
 
 
248a61c
85c36de
 
81bcfb3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import gradio as gr
import joblib
import numpy as np
import pandas as pd
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC
from sklearn.preprocessing import MinMaxScaler

# Load model and scaler
model = joblib.load("RF.joblib")
scaler = joblib.load("norm (4).joblib")

# Feature list (KEEP THIS CONSISTENT)
selected_features = [
    "_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
    "_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001",
    "_PolarizabilityD2001", "_PolarizabilityD3001", "_SolventAccessibilityD1001",
    "_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1001",
    "_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001",
    "_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001",
    "_PolarityD1050", "_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001",
    "_NormalizedVDWVD2001", "_NormalizedVDWVD2025", "_NormalizedVDWVD2050", "_NormalizedVDWVD3001",
    "_HydrophobicityD1001", "_HydrophobicityD2001", "_HydrophobicityD3001", "_HydrophobicityD3025",
    "A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V",
    "AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL",
    "HC", "IA", "IL", "IV", "LA", "LC", "LE", "LI", "LT", "LV", "KC", "MA",
    "MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV",
    "MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4",
    "GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26",
    "GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29",
    "GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26",
    "GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29",
    "GearyAuto_AvFlexibility30", "GearyAuto_Polarizability22", "GearyAuto_Polarizability24",
    "GearyAuto_Polarizability25", "GearyAuto_Polarizability27", "GearyAuto_Polarizability28",
    "GearyAuto_Polarizability29", "GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24",
    "GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30", "GearyAuto_ResidueASA21",
    "GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24",
    "GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24",
    "GearyAuto_ResidueVol25", "GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28",
    "GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30", "GearyAuto_Steric18",
    "GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28",
    "GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25",
    "GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28",
    "GearyAuto_Mutability29", "GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5",
    "APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13", "APAAC15", "APAAC18", "APAAC19",
    "APAAC24"
]

def extract_features(sequence):
    """Extract selected features, ensure order matches trained features, and normalize them."""
    if len(sequence) <= 9:
        return "Error: Protein sequence must be longer than 9 amino acids to extract features (for lamda=9)."

    all_features_dict = {}

    # Calculate all dipeptide features
    dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
    
    # Add only the first 420 features to the dictionary
    first_420_keys = list(dipeptide_features.keys())[:420]  # Get the first 420 keys
    filtered_dipeptide_features = {key: dipeptide_features[key] for key in first_420_keys}
    
    all_features_dict.update(filtered_dipeptide_features)

    auto_features = Autocorrelation.CalculateAutoTotal(sequence)
    all_features_dict.update(auto_features)

    ctd_features = CTD.CalculateCTD(sequence)
    all_features_dict.update(ctd_features)

    pseudo_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9)
    all_features_dict.update(pseudo_features)

    feature_values = list(all_features_dict.values())
    feature_array = np.array(feature_values).reshape(-1, 1) # Reshape to (1, n_features) - CORRECT SHAPE
    print(f"Shape of feature_array before normalization: {feature_array.shape}") # Debug print

    normalized_features = scaler.transform(feature_array.T) # Normalize - NO TRANSPOSE
    normalized_features = normalized_features.flatten() # Flatten AFTER normalization if needed


    selected_feature_dict = {feature: normalized_features[i] for i, feature in enumerate(selected_features) if feature in all_features_dict}

    selected_feature_df = pd.DataFrame([selected_feature_dict])
    selected_feature_array = selected_feature_df.T.to_numpy()

    return selected_feature_array


def predict(sequence):
    """Predicts whether the input sequence is an AMP."""
    features = extract_features(sequence)
    if isinstance(features, str) and features.startswith("Error:"):
        return features

    prediction = model.predict(features.T)[0]
    probabilities = model.predict_proba(features.T)[0]

    if prediction == 0:
        return f"{probabilities[0] * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)"
    else:
        return f"{probabilities[1] * 100:.2f}% chance of being Non-AMP"

# Gradio interface
iface = gr.Interface(
    fn=predict,
    inputs=gr.Textbox(label="Enter Protein Sequence"),
    outputs=gr.Label(label="Prediction"),
    title="AMP Classifier",
    description="Enter an amino acid sequence (e.g., FLPVLAGGL) to predict AMP."
)

iface.launch(share=True)