Spaces:
Running
Running
File size: 8,265 Bytes
85c36de 942bf87 51a3749 ea9a1bf e199881 51a3749 f0f9b27 51a3749 f0f9b27 e199881 8bc43cc 942bf87 f0f9b27 248a61c e199881 11e1095 dc9275e f0f9b27 3b84715 aa6838a f0f9b27 4d0770a c63f76d f0f9b27 bee2eef aa6838a bee2eef c63f76d 8319384 bee2eef 8319384 c63f76d f3b700a f0f9b27 4d0770a f0f9b27 9748994 f0f9b27 85c36de 9f51e97 f0f9b27 7d97f16 fb0b33c 81bcfb3 0c1f1e9 f0f9b27 25d4105 0c1f1e9 f0f9b27 0c1f1e9 f0f9b27 0c1f1e9 f0f9b27 0c1f1e9 ce9bf06 0c1f1e9 01617d1 0c1f1e9 f0f9b27 01617d1 0c1f1e9 f0f9b27 0c1f1e9 f0f9b27 357b75d f0f9b27 357b75d f0f9b27 85c36de 357b75d 85c36de 357b75d ce9bf06 357b75d f0f9b27 85c36de 357b75d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import gradio as gr
import joblib
import numpy as np
import pandas as pd
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC
from sklearn.preprocessing import MinMaxScaler
import torch
from transformers import BertTokenizer, BertModel
from math import expm1
# =====================
# Load AMP Classifier
# =====================
model = joblib.load("RF.joblib")
scaler = joblib.load("norm (4).joblib")
# =====================
# Load ProtBert Globally
# =====================
tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False)
protbert_model = BertModel.from_pretrained("Rostlab/prot_bert")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
protbert_model = protbert_model.to(device).eval()
# =====================
# Feature List (ProPy)
# =====================
selected_features = [
"_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
"_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001",
"_PolarizabilityD2001", "_PolarizabilityD3001", "_SolventAccessibilityD1001",
"_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1001",
"_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001",
"_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001",
"_PolarityD1050", "_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001",
"_NormalizedVDWVD2001", "_NormalizedVDWVD2025", "_NormalizedVDWVD2050", "_NormalizedVDWVD3001",
"_HydrophobicityD1001", "_HydrophobicityD2001", "_HydrophobicityD3001", "_HydrophobicityD3025",
"A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V",
"AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL",
"HC", "IA", "IL", "IV", "LA", "LC", "LE", "LI", "LT", "LV", "KC", "MA",
"MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV",
"MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4",
"GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26",
"GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29",
"GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26",
"GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29",
"GearyAuto_AvFlexibility30", "GearyAuto_Polarizability22", "GearyAuto_Polarizability24",
"GearyAuto_Polarizability25", "GearyAuto_Polarizability27", "GearyAuto_Polarizability28",
"GearyAuto_Polarizability29", "GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24",
"GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30", "GearyAuto_ResidueASA21",
"GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24",
"GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24",
"GearyAuto_ResidueVol25", "GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28",
"GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30", "GearyAuto_Steric18",
"GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28",
"GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25",
"GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28",
"GearyAuto_Mutability29", "GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5",
"APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13", "APAAC15", "APAAC18", "APAAC19",
"APAAC24"
]
# =====================
# AMP Feature Extractor
# =====================
def extract_features(sequence):
all_features_dict = {}
sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
if len(sequence) < 10:
return "Error: Sequence too short."
dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
filtered_dipeptide_features = {k: dipeptide_features[k] for k in list(dipeptide_features.keys())[:420]}
ctd_features = CTD.CalculateCTD(sequence)
auto_features = Autocorrelation.CalculateAutoTotal(sequence)
pseudo_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9)
all_features_dict.update(ctd_features)
all_features_dict.update(filtered_dipeptide_features)
all_features_dict.update(auto_features)
all_features_dict.update(pseudo_features)
feature_df_all = pd.DataFrame([all_features_dict])
normalized_array = scaler.transform(feature_df_all.values)
normalized_df = pd.DataFrame(normalized_array, columns=feature_df_all.columns)
selected_df = normalized_df[selected_features].fillna(0)
return selected_df.values
# =====================
# AMP Classifier
# =====================
def predict(sequence):
features = extract_features(sequence)
if isinstance(features, str):
return features
prediction = model.predict(features)[0]
probabilities = model.predict_proba(features)[0]
if prediction == 0:
return f"{probabilities[0] * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)"
else:
return f"{probabilities[1] * 100:.2f}% chance of being Non-AMP"
# =====================
# MIC Predictor (ProtBert-based)
# =====================
def predictmic(sequence):
sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
if len(sequence) < 10:
return {"Error": "Sequence too short or invalid. Must contain at least 10 valid amino acids."}
# Tokenize
seq_spaced = ' '.join(list(sequence))
tokens = tokenizer(seq_spaced, return_tensors="pt", padding='max_length', truncation=True, max_length=512)
tokens = {k: v.to(device) for k, v in tokens.items()}
with torch.no_grad():
outputs = protbert_model(**tokens)
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy().reshape(1, -1)
# MIC model config
bacteria_config = {
"E.coli": {
"model": "coli_xgboost_model.pkl",
"scaler": "coli_scaler.pkl",
"pca": None
},
"S.aureus": {
"model": "aur_xgboost_model.pkl",
"scaler": "aur_scaler.pkl",
"pca": None
},
"P.aeruginosa": {
"model": "arg_xgboost_model.pkl",
"scaler": "arg_scaler.pkl",
"pca": None
},
"K.Pneumonia": {
"model": "pne_mlp_model.pkl",
"scaler": "pne_scaler.pkl",
"pca": "pne_pca.pkl"
}
}
mic_results = {}
for bacterium, cfg in bacteria_config.items():
try:
scaler = joblib.load(cfg["scaler"])
scaled = scaler.transform(embedding)
if cfg["pca"]:
pca = joblib.load(cfg["pca"])
transformed = pca.transform(scaled)
else:
transformed = scaled
model = joblib.load(cfg["model"])
mic_log = model.predict(transformed)[0]
mic = round(expm1(mic_log), 3)
mic_results[bacterium] = mic
except Exception as e:
mic_results[bacterium] = f"Error: {str(e)}"
return mic_results
# =====================
# Combined Prediction Function
# =====================
def full_prediction(sequence):
features = extract_features(sequence)
if isinstance(features, str):
return "Error", "0%", {}
prediction = model.predict(features)[0]
probabilities = model.predict_proba(features)[0]
amp_result = "Antimicrobial Peptide (AMP)" if prediction == 0 else "Non-AMP"
confidence = round(probabilities[0 if prediction == 0 else 1] * 100, 2)
mic_values = predictmic(sequence)
return amp_result, f"{confidence}%", mic_values
# =====================
# Gradio Interface
# =====================
iface = gr.Interface(
fn=full_prediction,
inputs=gr.Textbox(label="Enter Protein Sequence"),
outputs=[
gr.Label(label="AMP Classification"),
gr.Label(label="Confidence"),
gr.JSON(label="Predicted MIC (µM) for Each Bacterium")
],
title="AMP & MIC Predictor",
description="Enter an amino acid sequence (≥10 valid letters) to predict AMP class and MIC values."
)
iface.launch(share=True)
|