File size: 8,265 Bytes
85c36de
942bf87
51a3749
ea9a1bf
e199881
51a3749
f0f9b27
 
 
51a3749
f0f9b27
 
 
e199881
8bc43cc
942bf87
f0f9b27
 
 
 
 
 
 
 
 
 
 
248a61c
e199881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e1095
dc9275e
f0f9b27
 
 
3b84715
aa6838a
f0f9b27
 
 
4d0770a
c63f76d
f0f9b27
bee2eef
aa6838a
bee2eef
c63f76d
8319384
bee2eef
 
8319384
c63f76d
f3b700a
f0f9b27
 
 
4d0770a
f0f9b27
9748994
f0f9b27
 
 
85c36de
9f51e97
f0f9b27
7d97f16
fb0b33c
 
81bcfb3
 
 
 
0c1f1e9
f0f9b27
 
 
25d4105
0c1f1e9
 
 
 
f0f9b27
0c1f1e9
 
 
 
 
f0f9b27
 
0c1f1e9
f0f9b27
0c1f1e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce9bf06
0c1f1e9
 
 
 
 
 
01617d1
0c1f1e9
f0f9b27
01617d1
0c1f1e9
 
 
f0f9b27
 
 
0c1f1e9
 
 
 
 
 
f0f9b27
 
 
357b75d
 
f0f9b27
 
357b75d
 
 
 
 
 
 
f0f9b27
 
 
85c36de
357b75d
85c36de
357b75d
 
 
ce9bf06
357b75d
 
f0f9b27
85c36de
 
357b75d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import gradio as gr
import joblib
import numpy as np
import pandas as pd
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC
from sklearn.preprocessing import MinMaxScaler
import torch
from transformers import BertTokenizer, BertModel
from math import expm1

# =====================
# Load AMP Classifier
# =====================
model = joblib.load("RF.joblib")
scaler = joblib.load("norm (4).joblib")

# =====================
# Load ProtBert Globally
# =====================
tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False)
protbert_model = BertModel.from_pretrained("Rostlab/prot_bert")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
protbert_model = protbert_model.to(device).eval()

# =====================
# Feature List (ProPy)
# =====================
selected_features = [
    "_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
    "_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001",
    "_PolarizabilityD2001", "_PolarizabilityD3001", "_SolventAccessibilityD1001",
    "_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1001",
    "_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001",
    "_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001",
    "_PolarityD1050", "_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001",
    "_NormalizedVDWVD2001", "_NormalizedVDWVD2025", "_NormalizedVDWVD2050", "_NormalizedVDWVD3001",
    "_HydrophobicityD1001", "_HydrophobicityD2001", "_HydrophobicityD3001", "_HydrophobicityD3025",
    "A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V",
    "AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL",
    "HC", "IA", "IL", "IV", "LA", "LC", "LE", "LI", "LT", "LV", "KC", "MA",
    "MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV",
    "MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4",
    "GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26",
    "GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29",
    "GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26",
    "GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29",
    "GearyAuto_AvFlexibility30", "GearyAuto_Polarizability22", "GearyAuto_Polarizability24",
    "GearyAuto_Polarizability25", "GearyAuto_Polarizability27", "GearyAuto_Polarizability28",
    "GearyAuto_Polarizability29", "GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24",
    "GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30", "GearyAuto_ResidueASA21",
    "GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24",
    "GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24",
    "GearyAuto_ResidueVol25", "GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28",
    "GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30", "GearyAuto_Steric18",
    "GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28",
    "GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25",
    "GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28",
    "GearyAuto_Mutability29", "GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5",
    "APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13", "APAAC15", "APAAC18", "APAAC19",
    "APAAC24"
]

# =====================
# AMP Feature Extractor
# =====================
def extract_features(sequence):
    all_features_dict = {}
    sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
    if len(sequence) < 10:
        return "Error: Sequence too short."

    dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
    filtered_dipeptide_features = {k: dipeptide_features[k] for k in list(dipeptide_features.keys())[:420]}
    ctd_features = CTD.CalculateCTD(sequence)
    auto_features = Autocorrelation.CalculateAutoTotal(sequence)
    pseudo_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9)

    all_features_dict.update(ctd_features)
    all_features_dict.update(filtered_dipeptide_features)
    all_features_dict.update(auto_features)
    all_features_dict.update(pseudo_features)

    feature_df_all = pd.DataFrame([all_features_dict])
    normalized_array = scaler.transform(feature_df_all.values)
    normalized_df = pd.DataFrame(normalized_array, columns=feature_df_all.columns)
    selected_df = normalized_df[selected_features].fillna(0)

    return selected_df.values

# =====================
# AMP Classifier
# =====================
def predict(sequence):
    features = extract_features(sequence)
    if isinstance(features, str):
        return features
    prediction = model.predict(features)[0]
    probabilities = model.predict_proba(features)[0]
    if prediction == 0:
        return f"{probabilities[0] * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)"
    else:
        return f"{probabilities[1] * 100:.2f}% chance of being Non-AMP"

# =====================
# MIC Predictor (ProtBert-based)
# =====================
def predictmic(sequence):
    sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
    if len(sequence) < 10:
        return {"Error": "Sequence too short or invalid. Must contain at least 10 valid amino acids."}

    # Tokenize
    seq_spaced = ' '.join(list(sequence))
    tokens = tokenizer(seq_spaced, return_tensors="pt", padding='max_length', truncation=True, max_length=512)
    tokens = {k: v.to(device) for k, v in tokens.items()}

    with torch.no_grad():
        outputs = protbert_model(**tokens)
        embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy().reshape(1, -1)

    # MIC model config
    bacteria_config = {
        "E.coli": {
            "model": "coli_xgboost_model.pkl",
            "scaler": "coli_scaler.pkl",
            "pca": None
        },
        "S.aureus": {
            "model": "aur_xgboost_model.pkl",
            "scaler": "aur_scaler.pkl",
            "pca": None
        },
        "P.aeruginosa": {
            "model": "arg_xgboost_model.pkl",
            "scaler": "arg_scaler.pkl",
            "pca": None
        },
        "K.Pneumonia": {
            "model": "pne_mlp_model.pkl",
            "scaler": "pne_scaler.pkl",
            "pca": "pne_pca.pkl"
        }
    }

    mic_results = {}
    for bacterium, cfg in bacteria_config.items():
        try:
            scaler = joblib.load(cfg["scaler"])
            scaled = scaler.transform(embedding)
            if cfg["pca"]:
                pca = joblib.load(cfg["pca"])
                transformed = pca.transform(scaled)
            else:
                transformed = scaled
            model = joblib.load(cfg["model"])
            mic_log = model.predict(transformed)[0]
            mic = round(expm1(mic_log), 3)
            mic_results[bacterium] = mic
        except Exception as e:
            mic_results[bacterium] = f"Error: {str(e)}"

    return mic_results

# =====================
# Combined Prediction Function
# =====================
def full_prediction(sequence):
    features = extract_features(sequence)
    if isinstance(features, str):
        return "Error", "0%", {}
    prediction = model.predict(features)[0]
    probabilities = model.predict_proba(features)[0]
    amp_result = "Antimicrobial Peptide (AMP)" if prediction == 0 else "Non-AMP"
    confidence = round(probabilities[0 if prediction == 0 else 1] * 100, 2)
    mic_values = predictmic(sequence)
    return amp_result, f"{confidence}%", mic_values

# =====================
# Gradio Interface
# =====================
iface = gr.Interface(
    fn=full_prediction,
    inputs=gr.Textbox(label="Enter Protein Sequence"),
    outputs=[
        gr.Label(label="AMP Classification"),
        gr.Label(label="Confidence"),
        gr.JSON(label="Predicted MIC (µM) for Each Bacterium")
    ],
    title="AMP & MIC Predictor",
    description="Enter an amino acid sequence (≥10 valid letters) to predict AMP class and MIC values."
)

iface.launch(share=True)