File size: 8,890 Bytes
85c36de
942bf87
51a3749
ea9a1bf
e199881
51a3749
 
248a61c
e199881
8bc43cc
942bf87
248a61c
 
e199881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e1095
dc9275e
3b84715
c63f76d
aa6838a
4d0770a
9eb7a80
c63f76d
9eb7a80
 
 
 
bee2eef
aa6838a
bee2eef
c63f76d
8319384
bee2eef
 
8319384
c63f76d
f3b700a
 
4d0770a
f3b700a
 
 
c63f76d
f3b700a
 
 
 
7d97f16
 
f3b700a
c63f76d
9748994
85c36de
248a61c
9f51e97
7d97f16
 
81bcfb3
fb0b33c
 
c9a939f
81bcfb3
 
 
 
0c1f1e9
 
25d4105
0c1f1e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357b75d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85c36de
357b75d
85c36de
357b75d
 
 
 
 
 
 
85c36de
 
357b75d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import gradio as gr
import joblib
import numpy as np
import pandas as pd
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC
from sklearn.preprocessing import MinMaxScaler

# Load model and scaler
model = joblib.load("RF.joblib")
scaler = joblib.load("norm (4).joblib")

# Feature list (KEEP THIS CONSISTENT)
selected_features = [
    "_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
    "_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001",
    "_PolarizabilityD2001", "_PolarizabilityD3001", "_SolventAccessibilityD1001",
    "_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1001",
    "_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001",
    "_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001",
    "_PolarityD1050", "_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001",
    "_NormalizedVDWVD2001", "_NormalizedVDWVD2025", "_NormalizedVDWVD2050", "_NormalizedVDWVD3001",
    "_HydrophobicityD1001", "_HydrophobicityD2001", "_HydrophobicityD3001", "_HydrophobicityD3025",
    "A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V",
    "AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL",
    "HC", "IA", "IL", "IV", "LA", "LC", "LE", "LI", "LT", "LV", "KC", "MA",
    "MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV",
    "MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4",
    "GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26",
    "GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29",
    "GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26",
    "GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29",
    "GearyAuto_AvFlexibility30", "GearyAuto_Polarizability22", "GearyAuto_Polarizability24",
    "GearyAuto_Polarizability25", "GearyAuto_Polarizability27", "GearyAuto_Polarizability28",
    "GearyAuto_Polarizability29", "GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24",
    "GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30", "GearyAuto_ResidueASA21",
    "GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24",
    "GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24",
    "GearyAuto_ResidueVol25", "GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28",
    "GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30", "GearyAuto_Steric18",
    "GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28",
    "GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25",
    "GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28",
    "GearyAuto_Mutability29", "GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5",
    "APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13", "APAAC15", "APAAC18", "APAAC19",
    "APAAC24"
]

def extract_features(sequence):

    all_features_dict = {}

      # Calculate all dipeptide features
    dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
    
    # Add only the first 420 features to the dictionary
    first_420_keys = list(dipeptide_features.keys())[:420]  # Get the first 420 keys
    filtered_dipeptide_features = {key: dipeptide_features[key] for key in first_420_keys}
    ctd_features = CTD.CalculateCTD(sequence)
    auto_features = Autocorrelation.CalculateAutoTotal(sequence)
    pseudo_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9)

    all_features_dict.update(ctd_features)
    all_features_dict.update(filtered_dipeptide_features)
    all_features_dict.update(auto_features)
    all_features_dict.update(pseudo_features)

    # Convert all features to DataFrame
    feature_df_all = pd.DataFrame([all_features_dict])

    # Normalize ALL features
    normalized_feature_array = scaler.transform(feature_df_all.values) # Normalize the numpy array
    normalized_feature_df = pd.DataFrame(normalized_feature_array, columns=feature_df_all.columns) # Convert back to DataFrame with original column names

    # Select features AFTER normalization
    feature_df_selected = normalized_feature_df[selected_features].copy()
    feature_df_selected = feature_df_selected.fillna(0) # Fill missing if any after selection (though unlikely now)
    feature_array = feature_df_selected.values


    return feature_array


def predict(sequence):
    """Predicts whether the input sequence is an AMP."""
    features = extract_features(sequence)
    if isinstance(features, str) and features.startswith("Error:"):
        return features

    prediction = model.predict(features)[0]
    probabilities = model.predict_proba(features)[0]

    if prediction == 0:
        return f"{probabilities[0] * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)"
    else:
        return f"{probabilities[1] * 100:.2f}% chance of being Non-AMP"

        
def predictmic(sequence):
    import torch
    from transformers import BertTokenizer, BertModel
    import numpy as np
    import pickle
    from math import expm1

    # === Load ProtBert model ===
    tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False)
    model = BertModel.from_pretrained("Rostlab/prot_bert")
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(device).eval()

    # === Preprocess input sequence ===
    sequence = ''.join([aa for aa in sequence.upper() if aa in "ACDEFGHIKLMNPQRSTVWY"])
    if len(sequence) < 10:
        return {"Error": "Sequence too short or invalid. Must contain at least 10 valid amino acids."}

    # === Tokenize & embed using mean pooling ===
    seq_spaced = ' '.join(list(sequence))
    tokens = tokenizer(seq_spaced, return_tensors="pt", padding='max_length', truncation=True, max_length=512)
    tokens = {k: v.to(device) for k, v in tokens.items()}

    with torch.no_grad():
        outputs = model(**tokens)
        embedding = outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy().reshape(1, -1)  # Shape: (1, 1024)

    # === MIC models and scalers for each bacterium ===
    bacteria_config = {
        "E.coli": {
            "model": "coli_xgboost_model.pkl",
            "scaler": "coli_scaler.pkl",
            "pca": None
        },
        "S.aureus": {
            "model": "aur_xgboost_model.pkl",
            "scaler": "aur_scaler.pkl",
            "pca": None
        },
        "P.aeruginosa": {
            "model": "arg_xgboost_model.pkl",
            "scaler": "arg_scaler.pkl",
            "pca": None
        },
        "K.Pneumonia": {
            "model": "pne_mlp_model.pkl",
            "scaler": "pne_scaler.pkl",
            "pca": "pne_pca"
        }
    }

    mic_results = {}

    for bacterium, cfg in bacteria_config.items():
        try:
            # === Load scaler and transform ===
            with open(cfg["scaler"], "rb") as f:
                scaler = pickle.load(f)
            scaled = scaler.transform(embedding)

            # === Apply PCA if exists ===
            if cfg["pca"] is not None:
                with open(cfg["pca"], "rb") as f:
                    pca = pickle.load(f)
                transformed = pca.transform(scaled)
            else:
                transformed = scaled

            # === Load model and predict ===
            with open(cfg["model"], "rb") as f:
                mic_model = pickle.load(f)
            mic_log = mic_model.predict(transformed)[0]
            mic = round(expm1(mic_log), 3)  # Inverse of log1p used in training

            mic_results[bacterium] = mic

        except Exception as e:
            mic_results[bacterium] = f"Error: {str(e)}"

    return mic_results





def full_prediction(sequence):
    # AMP prediction
    features = extract_features(sequence)
    if isinstance(features, str) and features.startswith("Error:"):
        return "Error", 0.0, {}

    prediction = model.predict(features)[0]
    probabilities = model.predict_proba(features)[0]

    amp_result = "Antimicrobial Peptide (AMP)" if prediction == 0 else "Non-AMP"
    confidence = round(probabilities[0 if prediction == 0 else 1] * 100, 2)

    # MIC prediction
    mic_values = predictmic(sequence)

    return amp_result, f"{confidence}%", mic_values

import gradio as gr
iface = gr.Interface(
    fn=full_prediction,
    inputs=gr.Textbox(label="Enter Protein Sequence"),
    outputs=[
        gr.Label(label="AMP Classification"),
        gr.Label(label="Confidence"),
        gr.JSON(label="Predicted MIC (µg/mL) for Each Bacterium")
    ],
    title="AMP & MIC Predictor",
    description="Enter an amino acid sequence (e.g., FLPVLAGGL) to predict AMP class and MIC values across bacteria."
)

iface.launch(share=True)