Spaces:
Running
Running
File size: 5,035 Bytes
85c36de 942bf87 51a3749 ea9a1bf e199881 51a3749 248a61c e199881 8bc43cc 942bf87 248a61c e199881 11e1095 dc9275e 3b84715 c63f76d aa6838a 4d0770a 6f19eaa c63f76d fb0b33c 248a61c aa6838a 8319384 c63f76d aa6838a 8319384 c63f76d 7d97f16 8319384 c63f76d fb0b33c 4d0770a fb0b33c c63f76d 7d97f16 fb0b33c 7d97f16 fb0b33c c63f76d 9748994 85c36de 248a61c 9f51e97 7d97f16 81bcfb3 fb0b33c c9a939f 81bcfb3 248a61c 85c36de 248a61c 85c36de 81bcfb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import gradio as gr
import joblib
import numpy as np
import pandas as pd
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC
from sklearn.preprocessing import MinMaxScaler
# Load model and scaler
model = joblib.load("RF.joblib")
scaler = joblib.load("norm (4).joblib")
# Feature list (KEEP THIS CONSISTENT)
selected_features = [
"_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
"_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001",
"_PolarizabilityD2001", "_PolarizabilityD3001", "_SolventAccessibilityD1001",
"_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1001",
"_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001",
"_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001",
"_PolarityD1050", "_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001",
"_NormalizedVDWVD2001", "_NormalizedVDWVD2025", "_NormalizedVDWVD2050", "_NormalizedVDWVD3001",
"_HydrophobicityD1001", "_HydrophobicityD2001", "_HydrophobicityD3001", "_HydrophobicityD3025",
"A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V",
"AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL",
"HC", "IA", "IL", "IV", "LA", "LC", "LE", "LI", "LT", "LV", "KC", "MA",
"MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV",
"MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4",
"GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26",
"GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29",
"GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26",
"GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29",
"GearyAuto_AvFlexibility30", "GearyAuto_Polarizability22", "GearyAuto_Polarizability24",
"GearyAuto_Polarizability25", "GearyAuto_Polarizability27", "GearyAuto_Polarizability28",
"GearyAuto_Polarizability29", "GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24",
"GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30", "GearyAuto_ResidueASA21",
"GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24",
"GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24",
"GearyAuto_ResidueVol25", "GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28",
"GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30", "GearyAuto_Steric18",
"GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28",
"GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25",
"GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28",
"GearyAuto_Mutability29", "GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5",
"APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13", "APAAC15", "APAAC18", "APAAC19",
"APAAC24"
]
def extract_features(sequence):
all_features_dict = {}
# Calculate all dipeptide features
dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)
# Add all dipeptide features
all_features_dict.update(dipeptide_features)
auto_features = Autocorrelation.CalculateAutoTotal(sequence)
all_features_dict.update(auto_features)
ctd_features = CTD.CalculateCTD(sequence)
all_features_dict.update(ctd_features)
pseudo_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9)
all_features_dict.update(pseudo_features)
# Convert feature dictionary to DataFrame, handling missing features
feature_df = pd.DataFrame([all_features_dict])
# Select features and handle missing columns
feature_df_selected = feature_df[selected_features].copy() # Use .copy() to avoid SettingWithCopyWarning
# Fill missing features with 0 (or another appropriate value)
feature_df_selected = feature_df_selected.fillna(0)
feature_array = feature_df_selected.values # Get numpy array directly
# Normalize the features
normalized_features = scaler.transform(feature_array)
return normalized_features
def predict(sequence):
"""Predicts whether the input sequence is an AMP."""
features = extract_features(sequence)
if isinstance(features, str) and features.startswith("Error:"):
return features
prediction = model.predict(features)[0]
probabilities = model.predict_proba(features)[0]
if prediction == 0:
return f"{probabilities[0] * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)"
else:
return f"{probabilities[1] * 100:.2f}% chance of being Non-AMP"
# Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.Textbox(label="Enter Protein Sequence"),
outputs=gr.Label(label="Prediction"),
title="AMP Classifier",
description="Enter an amino acid sequence (e.g., FLPVLAGGL) to predict AMP."
)
iface.launch(share=True) |