File size: 5,035 Bytes
85c36de
942bf87
51a3749
ea9a1bf
e199881
51a3749
 
248a61c
e199881
8bc43cc
942bf87
248a61c
 
e199881
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e1095
dc9275e
3b84715
c63f76d
aa6838a
4d0770a
6f19eaa
c63f76d
fb0b33c
 
 
 
248a61c
aa6838a
8319384
c63f76d
aa6838a
8319384
c63f76d
7d97f16
8319384
c63f76d
fb0b33c
 
 
 
 
 
 
 
4d0770a
 
fb0b33c
c63f76d
7d97f16
fb0b33c
 
7d97f16
fb0b33c
c63f76d
9748994
85c36de
248a61c
9f51e97
7d97f16
 
81bcfb3
fb0b33c
 
c9a939f
81bcfb3
 
 
 
 
248a61c
85c36de
 
 
 
 
248a61c
85c36de
 
81bcfb3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import gradio as gr
import joblib
import numpy as np
import pandas as pd
from propy import AAComposition, Autocorrelation, CTD, PseudoAAC
from sklearn.preprocessing import MinMaxScaler

# Load model and scaler
model = joblib.load("RF.joblib")
scaler = joblib.load("norm (4).joblib")

# Feature list (KEEP THIS CONSISTENT)
selected_features = [
    "_SolventAccessibilityC3", "_SecondaryStrC1", "_SecondaryStrC3", "_ChargeC1", "_PolarityC1",
    "_NormalizedVDWVC1", "_HydrophobicityC3", "_SecondaryStrT23", "_PolarizabilityD1001",
    "_PolarizabilityD2001", "_PolarizabilityD3001", "_SolventAccessibilityD1001",
    "_SolventAccessibilityD2001", "_SolventAccessibilityD3001", "_SecondaryStrD1001",
    "_SecondaryStrD1075", "_SecondaryStrD2001", "_SecondaryStrD3001", "_ChargeD1001",
    "_ChargeD1025", "_ChargeD2001", "_ChargeD3075", "_ChargeD3100", "_PolarityD1001",
    "_PolarityD1050", "_PolarityD2001", "_PolarityD3001", "_NormalizedVDWVD1001",
    "_NormalizedVDWVD2001", "_NormalizedVDWVD2025", "_NormalizedVDWVD2050", "_NormalizedVDWVD3001",
    "_HydrophobicityD1001", "_HydrophobicityD2001", "_HydrophobicityD3001", "_HydrophobicityD3025",
    "A", "R", "D", "C", "E", "Q", "H", "I", "M", "P", "Y", "V",
    "AR", "AV", "RC", "RL", "RV", "CR", "CC", "CL", "CK", "EE", "EI", "EL",
    "HC", "IA", "IL", "IV", "LA", "LC", "LE", "LI", "LT", "LV", "KC", "MA",
    "MS", "SC", "TC", "TV", "YC", "VC", "VE", "VL", "VK", "VV",
    "MoreauBrotoAuto_FreeEnergy30", "MoranAuto_Hydrophobicity2", "MoranAuto_Hydrophobicity4",
    "GearyAuto_Hydrophobicity20", "GearyAuto_Hydrophobicity24", "GearyAuto_Hydrophobicity26",
    "GearyAuto_Hydrophobicity27", "GearyAuto_Hydrophobicity28", "GearyAuto_Hydrophobicity29",
    "GearyAuto_Hydrophobicity30", "GearyAuto_AvFlexibility22", "GearyAuto_AvFlexibility26",
    "GearyAuto_AvFlexibility27", "GearyAuto_AvFlexibility28", "GearyAuto_AvFlexibility29",
    "GearyAuto_AvFlexibility30", "GearyAuto_Polarizability22", "GearyAuto_Polarizability24",
    "GearyAuto_Polarizability25", "GearyAuto_Polarizability27", "GearyAuto_Polarizability28",
    "GearyAuto_Polarizability29", "GearyAuto_Polarizability30", "GearyAuto_FreeEnergy24",
    "GearyAuto_FreeEnergy25", "GearyAuto_FreeEnergy30", "GearyAuto_ResidueASA21",
    "GearyAuto_ResidueASA22", "GearyAuto_ResidueASA23", "GearyAuto_ResidueASA24",
    "GearyAuto_ResidueASA30", "GearyAuto_ResidueVol21", "GearyAuto_ResidueVol24",
    "GearyAuto_ResidueVol25", "GearyAuto_ResidueVol26", "GearyAuto_ResidueVol28",
    "GearyAuto_ResidueVol29", "GearyAuto_ResidueVol30", "GearyAuto_Steric18",
    "GearyAuto_Steric21", "GearyAuto_Steric26", "GearyAuto_Steric27", "GearyAuto_Steric28",
    "GearyAuto_Steric29", "GearyAuto_Steric30", "GearyAuto_Mutability23", "GearyAuto_Mutability25",
    "GearyAuto_Mutability26", "GearyAuto_Mutability27", "GearyAuto_Mutability28",
    "GearyAuto_Mutability29", "GearyAuto_Mutability30", "APAAC1", "APAAC4", "APAAC5",
    "APAAC6", "APAAC8", "APAAC9", "APAAC12", "APAAC13", "APAAC15", "APAAC18", "APAAC19",
    "APAAC24"
]

def extract_features(sequence):

    all_features_dict = {}

    # Calculate all dipeptide features
    dipeptide_features = AAComposition.CalculateAADipeptideComposition(sequence)

    # Add all dipeptide features
    all_features_dict.update(dipeptide_features)


    auto_features = Autocorrelation.CalculateAutoTotal(sequence)
    all_features_dict.update(auto_features)

    ctd_features = CTD.CalculateCTD(sequence)
    all_features_dict.update(ctd_features)

    pseudo_features = PseudoAAC.GetAPseudoAAC(sequence, lamda=9)
    all_features_dict.update(pseudo_features)

    # Convert feature dictionary to DataFrame, handling missing features
    feature_df = pd.DataFrame([all_features_dict])

    # Select features and handle missing columns
    feature_df_selected = feature_df[selected_features].copy() # Use .copy() to avoid SettingWithCopyWarning

    # Fill missing features with 0 (or another appropriate value)
    feature_df_selected = feature_df_selected.fillna(0)


    feature_array = feature_df_selected.values # Get numpy array directly


    # Normalize the features
    normalized_features = scaler.transform(feature_array)

    return normalized_features


def predict(sequence):
    """Predicts whether the input sequence is an AMP."""
    features = extract_features(sequence)
    if isinstance(features, str) and features.startswith("Error:"):
        return features

    prediction = model.predict(features)[0]
    probabilities = model.predict_proba(features)[0]

    if prediction == 0:
        return f"{probabilities[0] * 100:.2f}% chance of being an Antimicrobial Peptide (AMP)"
    else:
        return f"{probabilities[1] * 100:.2f}% chance of being Non-AMP"

# Gradio interface
iface = gr.Interface(
    fn=predict,
    inputs=gr.Textbox(label="Enter Protein Sequence"),
    outputs=gr.Label(label="Prediction"),
    title="AMP Classifier",
    description="Enter an amino acid sequence (e.g., FLPVLAGGL) to predict AMP."
)

iface.launch(share=True)