Spaces:
Sleeping
Sleeping
File size: 17,472 Bytes
e87b8a7 e509c53 a987525 c971d0d e509c53 c971d0d d47a566 e87b8a7 d47a566 e509c53 f800f49 e87b8a7 0460eee a987525 e509c53 5b5c1fd e509c53 a987525 b66fd13 b3305c3 e509c53 c971d0d a987525 0460eee a987525 0460eee 756c987 a987525 756c987 0460eee a987525 c971d0d f800f49 d47a566 f800f49 a987525 f800f49 a987525 f800f49 a987525 f800f49 a987525 f800f49 a987525 f800f49 d47a566 f800f49 d47a566 a987525 d47a566 a987525 d47a566 a987525 d47a566 a987525 d47a566 a987525 d47a566 a987525 d47a566 c971d0d a987525 d47a566 a987525 e509c53 a987525 e509c53 d47a566 e87b8a7 f800f49 e87b8a7 a987525 e87b8a7 a987525 e87b8a7 a987525 e87b8a7 a987525 e87b8a7 a987525 e87b8a7 a987525 e87b8a7 a987525 e87b8a7 f800f49 e87b8a7 f800f49 e87b8a7 f800f49 a987525 e87b8a7 a987525 f800f49 e87b8a7 e509c53 a987525 1ccff27 e509c53 e87b8a7 a987525 e509c53 1ccff27 e509c53 c971d0d a987525 e87b8a7 a987525 e87b8a7 e509c53 a987525 e509c53 a987525 e87b8a7 a987525 e87b8a7 a987525 e87b8a7 e509c53 a987525 e87b8a7 a987525 e509c53 e87b8a7 e509c53 a987525 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
from flask import Flask, request, jsonify, Response
from werkzeug.utils import secure_filename
from flask_cors import CORS
import os
import torch
import fitz # PyMuPDF
import pytesseract
from pdf2image import convert_from_path
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import tempfile
from PIL import Image
import threading
import json
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Fix caching issue on Hugging Face Spaces
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
os.environ["HF_HOME"] = "/tmp"
os.environ["XDG_CACHE_HOME"] = "/tmp"
app = Flask(__name__)
CORS(app) # Enable CORS for all routes
UPLOAD_FOLDER = "/tmp/uploads"
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
# Global model variables
embedder = None
qa_pipeline = None
tokenizer = None
model = None
# Initialize models once on startup
def initialize_models():
global embedder, qa_pipeline, tokenizer, model
try:
logger.info("Loading SentenceTransformer model...")
embedder = SentenceTransformer("all-MiniLM-L6-v2")
logger.info("Loading QA pipeline...")
qa_pipeline = pipeline(
"question-answering",
model="distilbert-base-cased-distilled-squad",
tokenizer="distilbert-base-cased",
device=-1 # Force CPU
)
logger.info("Loading language model...")
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16, # Use float16 for lower memory on CPU
device_map="cpu", # Explicitly set to CPU
low_cpu_mem_usage=True # Optimize memory loading
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
logger.info("Models initialized successfully")
except Exception as e:
logger.error(f"Error initializing models: {str(e)}")
raise
# Cleanup function for temporary files
def cleanup_temp_files(filepath):
try:
if os.path.exists(filepath):
os.remove(filepath)
logger.info(f"Removed temporary file: {filepath}")
except Exception as e:
logger.warning(f"Failed to clean up file {filepath}: {str(e)}")
# Improved OCR function
def ocr_pdf(pdf_path):
try:
logger.info(f"Starting OCR for {pdf_path}")
# Use a higher DPI for better quality
images = convert_from_path(
pdf_path,
dpi=300, # Higher DPI for better quality
grayscale=False, # Color might help with some PDFs
thread_count=2, # Use multiple threads
use_pdftocairo=True # pdftocairo often gives better results
)
text = ""
for i, img in enumerate(images):
logger.info(f"Processing page {i+1} of {len(images)}")
# Preprocess the image for better OCR results
preprocessed = preprocess_image_for_ocr(img)
# Use tesseract with more options
page_text = pytesseract.image_to_string(
preprocessed,
config='--psm 1 --oem 3 -l eng' # Page segmentation mode 1 (auto), OCR Engine mode 3 (default)
)
text += page_text
logger.info(f"OCR completed with {len(text)} characters extracted")
return text
except Exception as e:
logger.error(f"OCR error: {str(e)}")
return ""
# Image preprocessing function for better OCR
def preprocess_image_for_ocr(img):
# Convert to grayscale
gray = img.convert('L')
# Optional: You could add more preprocessing here like:
# - Thresholding
# - Noise removal
# - Contrast enhancement
return gray
# Improved extract_text function with better text detection
def extract_text(pdf_path):
try:
logger.info(f"Extracting text from {pdf_path}")
doc = fitz.open(pdf_path)
text = ""
for page_num, page in enumerate(doc):
page_text = page.get_text()
text += page_text
logger.info(f"Extracted {len(page_text)} characters from page {page_num+1}")
# Check if the text is meaningful (more sophisticated check)
words = text.split()
unique_words = set(word.lower() for word in words if len(word) > 2)
logger.info(f"PDF text extraction: {len(text)} chars, {len(words)} words, {len(unique_words)} unique words")
# If we don't have enough meaningful text, try OCR
if len(unique_words) < 20 or len(text.strip()) < 100:
logger.info("Text extraction yielded insufficient results, trying OCR...")
ocr_text = ocr_pdf(pdf_path)
# If OCR gave us more text, use it
if len(ocr_text.strip()) > len(text.strip()):
logger.info(f"Using OCR result: {len(ocr_text)} chars (better than {len(text)} chars)")
text = ocr_text
return text
except Exception as e:
logger.error(f"Text extraction error: {str(e)}")
return ""
# Split into chunks
def split_into_chunks(text, max_tokens=300, overlap=50):
logger.info(f"Splitting text into chunks (max_tokens={max_tokens}, overlap={overlap})")
sentences = text.split('.')
chunks, current = [], ''
for sentence in sentences:
sentence = sentence.strip() + '.'
if len(current) + len(sentence) < max_tokens:
current += sentence
else:
chunks.append(current.strip())
words = current.split()
if len(words) > overlap:
current = ' '.join(words[-overlap:]) + ' ' + sentence
else:
current = sentence
if current:
chunks.append(current.strip())
logger.info(f"Split text into {len(chunks)} chunks")
return chunks
# Setup FAISS
def setup_faiss(chunks):
try:
logger.info("Setting up FAISS index")
global embedder
if embedder is None:
embedder = SentenceTransformer("all-MiniLM-L6-v2")
embeddings = embedder.encode(chunks)
dim = embeddings.shape[1]
index = faiss.IndexFlatL2(dim)
index.add(embeddings)
logger.info(f"FAISS index created with {len(chunks)} chunks and dimension {dim}")
return index, embeddings, chunks
except Exception as e:
logger.error(f"FAISS setup error: {str(e)}")
raise
# QA pipeline
def answer_with_qa_pipeline(chunks, question):
try:
logger.info(f"Answering with QA pipeline: '{question}'")
global qa_pipeline
if qa_pipeline is None:
logger.info("QA pipeline not initialized, creating now...")
qa_pipeline = pipeline(
"question-answering",
model="distilbert-base-cased-distilled-squad",
tokenizer="distilbert-base-cased",
device=0 if device == "cuda" else -1
)
# Limit context size to avoid token length issues
context = " ".join(chunks[:5])
if len(context) > 5000: # Approx token limit
context = context[:5000]
result = qa_pipeline(question=question, context=context)
logger.info(f"QA pipeline answer: '{result['answer']}' (score: {result['score']})")
return result["answer"]
except Exception as e:
logger.error(f"QA pipeline error: {str(e)}")
return ""
# Generation-based answering with streaming support
def generate_streaming_answer(index, embeddings, chunks, question, streamer):
try:
logger.info(f"Generating streaming answer for: '{question}'")
global tokenizer, model
if tokenizer is None or model is None:
logger.info("Generation models not initialized, creating now...")
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="cpu",
low_cpu_mem_usage=True
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
# Get embeddings for question
q_embedding = embedder.encode([question])
# Find relevant chunks
_, top_k_indices = index.search(q_embedding, k=3)
relevant_chunks = [chunks[i] for i in top_k_indices[0]]
context = " ".join(relevant_chunks)
# Limit context size
if len(context) > 2000:
context = context[:2000]
# Create prompt
prompt = f"""<|im_start|>system
You are a helpful assistant answering questions based on provided PDF content. Use the information below to give a clear, concise, and accurate answer. Avoid speculation and focus on the context.
<|im_end|>
<|im_start|>user
**Context**: {context}
**Question**: {question}
**Instruction**: Provide a detailed and accurate answer based on the context. If the context doesn't contain enough information, say so clearly. <|im_end|>"""
# Handle inputs
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
# Move inputs to CPU
inputs = {k: v.to('cpu') for k, v in inputs.items()}
# Generate answer using the streamer
generate_kwargs = dict(
**inputs,
streamer=streamer,
max_new_tokens=300,
temperature=0.7,
top_p=0.9,
do_sample=True,
num_beams=2,
no_repeat_ngram_size=2
)
# Generate the answer (this will stream through the streamer)
model.generate(**generate_kwargs)
except Exception as e:
logger.error(f"Streaming generation error: {str(e)}")
# If an error occurs during streaming, push an error message to the streamer
try:
streamer.put("I encountered an error while generating the response.")
except:
pass
# API route
@app.route('/')
def home():
return jsonify({"message": "PDF QA API is running!"})
@app.route('/ask', methods=['POST'])
def ask():
file = request.files.get("pdf")
question = request.form.get("question", "")
streaming = request.form.get("streaming", "true").lower() == "true"
filepath = None
if not file or not question:
return jsonify({"error": "Both PDF file and question are required"}), 400
try:
filename = secure_filename(file.filename)
filepath = os.path.join(UPLOAD_FOLDER, filename)
file.save(filepath)
logger.info(f"Processing file: {filename}, Question: '{question}', Streaming: {streaming}")
# Process PDF and extract text
text = extract_text(filepath)
if not text.strip():
return jsonify({"error": "Could not extract text from the PDF"}), 400
chunks = split_into_chunks(text)
if not chunks:
return jsonify({"error": "PDF content couldn't be processed"}), 400
# Set up FAISS for semantic search
index, embeddings, chunks = setup_faiss(chunks)
# For non-streaming responses, use the regular approach
if not streaming:
try:
answer = answer_with_qa_pipeline(chunks, question)
if not answer or len(answer.strip()) < 20:
answer = answer_with_generation(index, embeddings, chunks, question)
return jsonify({"answer": answer})
except Exception as e:
logger.error(f"Error generating answer: {str(e)}")
return jsonify({"error": f"An error occurred: {str(e)}"}), 500
# For streaming responses, use SSE
else:
try:
# Create a streamer for the text generation
streamer = TextIteratorStreamer(
tokenizer, skip_prompt=True, skip_special_tokens=True
)
# Start generation in a separate thread
thread = threading.Thread(
target=generate_streaming_answer,
args=(index, embeddings, chunks, question, streamer)
)
thread.start()
# Stream responses as Server-Sent Events (SSE)
def generate():
for new_text in streamer:
yield f"data: {json.dumps({'response': new_text})}\n\n"
yield "data: [DONE]\n\n"
# Cleanup will happen in a separate thread after the response is complete
cleanup_thread = threading.Thread(
target=cleanup_temp_files,
args=(filepath,)
)
cleanup_thread.daemon = True
cleanup_thread.start()
return Response(generate(), mimetype="text/event-stream")
except Exception as e:
logger.error(f"Error in streaming setup: {str(e)}")
return jsonify({"error": f"An error occurred: {str(e)}"}), 500
except Exception as e:
logger.error(f"Error processing request: {str(e)}")
return jsonify({"error": f"An error occurred processing your request: {str(e)}"}), 500
finally:
# For non-streaming responses, clean up immediately
# For streaming, we clean up in a separate thread
if filepath and not streaming:
cleanup_temp_files(filepath)
# Original generation function kept for non-streaming use
def answer_with_generation(index, embeddings, chunks, question):
try:
logger.info(f"Answering with generation model: '{question}'")
global tokenizer, model
if tokenizer is None or model is None:
logger.info("Generation models not initialized, creating now...")
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="cpu",
low_cpu_mem_usage=True
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
# Get embeddings for question
q_embedding = embedder.encode([question])
# Find relevant chunks
_, top_k_indices = index.search(q_embedding, k=3)
relevant_chunks = [chunks[i] for i in top_k_indices[0]]
context = " ".join(relevant_chunks)
# Limit context size
if len(context) > 2000:
context = context[:2000]
# Create prompt
prompt = f"""<|im_start|>system
You are a helpful assistant answering questions based on provided PDF content. Use the information below to give a clear, concise, and accurate answer. Avoid speculation and focus on the context.
<|im_end|>
<|im_start|>user
**Context**: {context}
**Question**: {question}
**Instruction**: Provide a detailed and accurate answer based on the context. If the context doesn't contain enough information, say so clearly. <|im_end|>"""
# Handle inputs
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
# Move inputs to CPU
inputs = {k: v.to('cpu') for k, v in inputs.items()}
# Generate answer
output = model.generate(
**inputs,
max_new_tokens=300,
temperature=0.7,
top_p=0.9,
do_sample=True,
num_beams=2,
no_repeat_ngram_size=2
)
# Decode and format answer
answer = tokenizer.decode(output[0], skip_special_tokens=True)
if "<|im_end|>" in answer:
answer = answer.split("<|im_end|>")[1].strip()
elif "Instruction" in answer:
answer = answer.split("Instruction")[1].strip()
logger.info(f"Generation answer: '{answer[:50]}...' (length: {len(answer)})")
return answer.strip()
except Exception as e:
logger.error(f"Generation error: {str(e)}")
return "I couldn't generate a good answer based on the PDF content."
if __name__ == "__main__":
try:
# Initialize models at startup
initialize_models()
logger.info("Starting Flask application")
app.run(host="0.0.0.0", port=7860)
except Exception as e:
logger.critical(f"Failed to start application: {str(e)}") |