Spaces:
Running
Running
File size: 15,583 Bytes
4ab0eb9 e509c53 a987525 c971d0d e509c53 c971d0d d47a566 4ab0eb9 d47a566 e509c53 f800f49 0460eee a987525 e509c53 5b5c1fd e509c53 a987525 b66fd13 b3305c3 e509c53 c971d0d a987525 0460eee a987525 0460eee 756c987 a987525 756c987 0460eee a987525 4ab0eb9 a987525 c971d0d f800f49 d47a566 f800f49 a987525 f800f49 a987525 f800f49 a987525 f800f49 a987525 f800f49 a987525 f800f49 d47a566 f800f49 d47a566 a987525 d47a566 a987525 d47a566 a987525 d47a566 a987525 d47a566 a987525 d47a566 a987525 d47a566 c971d0d a987525 d47a566 a987525 e509c53 a987525 e509c53 d47a566 4ab0eb9 f800f49 4ab0eb9 a987525 4ab0eb9 a987525 4ab0eb9 a987525 4ab0eb9 a987525 4ab0eb9 a987525 4ab0eb9 a987525 4ab0eb9 a987525 4ab0eb9 f800f49 4ab0eb9 f800f49 a987525 4ab0eb9 a987525 4ab0eb9 f800f49 4ab0eb9 e509c53 a987525 1ccff27 e509c53 a987525 e509c53 1ccff27 e509c53 c971d0d a987525 4ab0eb9 a987525 4ab0eb9 e509c53 a987525 e509c53 a987525 4ab0eb9 e87b8a7 4ab0eb9 e87b8a7 4ab0eb9 e509c53 a987525 4ab0eb9 a987525 e509c53 a987525 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
from flask import Flask, request, jsonify
from werkzeug.utils import secure_filename
from flask_cors import CORS
import os
import torch
import fitz # PyMuPDF
import pytesseract
from pdf2image import convert_from_path
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import tempfile
from PIL import Image
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Fix caching issue on Hugging Face Spaces
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
os.environ["HF_HOME"] = "/tmp"
os.environ["XDG_CACHE_HOME"] = "/tmp"
app = Flask(__name__)
CORS(app) # Enable CORS for all routes
UPLOAD_FOLDER = "/tmp/uploads"
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
# Global model variables
embedder = None
qa_pipeline = None
tokenizer = None
model = None
# Initialize models once on startup
def initialize_models():
global embedder, qa_pipeline, tokenizer, model
try:
logger.info("Loading SentenceTransformer model...")
embedder = SentenceTransformer("all-MiniLM-L6-v2")
logger.info("Loading QA pipeline...")
qa_pipeline = pipeline(
"question-answering",
model="distilbert-base-cased-distilled-squad",
tokenizer="distilbert-base-cased",
device=-1 # Force CPU
)
logger.info("Loading language model...")
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16, # Use float16 for lower memory on CPU
device_map="cpu", # Explicitly set to CPU
low_cpu_mem_usage=True # Optimize memory loading
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
logger.info("Models initialized successfully")
except Exception as e:
logger.error(f"Error initializing models: {str(e)}")
raise
# Generation-based answering
def answer_with_generation(index, embeddings, chunks, question):
try:
logger.info(f"Answering with generation model: '{question}'")
global tokenizer, model
if tokenizer is None or model is None:
logger.info("Generation models not initialized, creating now...")
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="cpu",
low_cpu_mem_usage=True
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
# Get embeddings for question
q_embedding = embedder.encode([question])
# Find relevant chunks
_, top_k_indices = index.search(q_embedding, k=3)
relevant_chunks = [chunks[i] for i in top_k_indices[0]]
context = " ".join(relevant_chunks)
# Limit context size
if len(context) > 2000:
context = context[:2000]
# Create prompt
prompt = f"""<|im_start|>system
You are a helpful assistant answering questions based on provided PDF content. Use the information below to give a clear, concise, and accurate answer. Avoid speculation and focus on the context.
<|im_end|>
<|im_start|>user
**Context**: {context}
**Question**: {question}
**Instruction**: Provide a detailed and accurate answer based on the context. If the context doesn't contain enough information, say so clearly. <|im_end|>"""
# Handle inputs
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
# Move inputs to CPU
inputs = {k: v.to('cpu') for k, v in inputs.items()}
# Generate answer
output = model.generate(
**inputs,
max_new_tokens=300,
temperature=0.7,
top_p=0.9,
do_sample=True,
num_beams=2,
no_repeat_ngram_size=2
)
# Decode and format answer
answer = tokenizer.decode(output[0], skip_special_tokens=True)
if "<|im_end|>" in answer:
answer = answer.split("<|im_end|>")[1].strip()
elif "Instruction" in answer:
answer = answer.split("Instruction")[1].strip()
logger.info(f"Generation answer: '{answer[:50]}...' (length: {len(answer)})")
return answer.strip()
except Exception as e:
logger.error(f"Generation error: {str(e)}")
return "I couldn't generate a good answer based on the PDF content."
# Cleanup function for temporary files
def cleanup_temp_files(filepath):
try:
if os.path.exists(filepath):
os.remove(filepath)
logger.info(f"Removed temporary file: {filepath}")
except Exception as e:
logger.warning(f"Failed to clean up file {filepath}: {str(e)}")
# Improved OCR function
def ocr_pdf(pdf_path):
try:
logger.info(f"Starting OCR for {pdf_path}")
# Use a higher DPI for better quality
images = convert_from_path(
pdf_path,
dpi=300, # Higher DPI for better quality
grayscale=False, # Color might help with some PDFs
thread_count=2, # Use multiple threads
use_pdftocairo=True # pdftocairo often gives better results
)
text = ""
for i, img in enumerate(images):
logger.info(f"Processing page {i+1} of {len(images)}")
# Preprocess the image for better OCR results
preprocessed = preprocess_image_for_ocr(img)
# Use tesseract with more options
page_text = pytesseract.image_to_string(
preprocessed,
config='--psm 1 --oem 3 -l eng' # Page segmentation mode 1 (auto), OCR Engine mode 3 (default)
)
text += page_text
logger.info(f"OCR completed with {len(text)} characters extracted")
return text
except Exception as e:
logger.error(f"OCR error: {str(e)}")
return ""
# Image preprocessing function for better OCR
def preprocess_image_for_ocr(img):
# Convert to grayscale
gray = img.convert('L')
# Optional: You could add more preprocessing here like:
# - Thresholding
# - Noise removal
# - Contrast enhancement
return gray
# Improved extract_text function with better text detection
def extract_text(pdf_path):
try:
logger.info(f"Extracting text from {pdf_path}")
doc = fitz.open(pdf_path)
text = ""
for page_num, page in enumerate(doc):
page_text = page.get_text()
text += page_text
logger.info(f"Extracted {len(page_text)} characters from page {page_num+1}")
# Check if the text is meaningful (more sophisticated check)
words = text.split()
unique_words = set(word.lower() for word in words if len(word) > 2)
logger.info(f"PDF text extraction: {len(text)} chars, {len(words)} words, {len(unique_words)} unique words")
# If we don't have enough meaningful text, try OCR
if len(unique_words) < 20 or len(text.strip()) < 100:
logger.info("Text extraction yielded insufficient results, trying OCR...")
ocr_text = ocr_pdf(pdf_path)
# If OCR gave us more text, use it
if len(ocr_text.strip()) > len(text.strip()):
logger.info(f"Using OCR result: {len(ocr_text)} chars (better than {len(text)} chars)")
text = ocr_text
return text
except Exception as e:
logger.error(f"Text extraction error: {str(e)}")
return ""
# Split into chunks
def split_into_chunks(text, max_tokens=300, overlap=50):
logger.info(f"Splitting text into chunks (max_tokens={max_tokens}, overlap={overlap})")
sentences = text.split('.')
chunks, current = [], ''
for sentence in sentences:
sentence = sentence.strip() + '.'
if len(current) + len(sentence) < max_tokens:
current += sentence
else:
chunks.append(current.strip())
words = current.split()
if len(words) > overlap:
current = ' '.join(words[-overlap:]) + ' ' + sentence
else:
current = sentence
if current:
chunks.append(current.strip())
logger.info(f"Split text into {len(chunks)} chunks")
return chunks
# Setup FAISS
def setup_faiss(chunks):
try:
logger.info("Setting up FAISS index")
global embedder
if embedder is None:
embedder = SentenceTransformer("all-MiniLM-L6-v2")
embeddings = embedder.encode(chunks)
dim = embeddings.shape[1]
index = faiss.IndexFlatL2(dim)
index.add(embeddings)
logger.info(f"FAISS index created with {len(chunks)} chunks and dimension {dim}")
return index, embeddings, chunks
except Exception as e:
logger.error(f"FAISS setup error: {str(e)}")
raise
# QA pipeline
def answer_with_qa_pipeline(chunks, question):
try:
logger.info(f"Answering with QA pipeline: '{question}'")
global qa_pipeline
if qa_pipeline is None:
logger.info("QA pipeline not initialized, creating now...")
qa_pipeline = pipeline(
"question-answering",
model="distilbert-base-cased-distilled-squad",
tokenizer="distilbert-base-cased",
device=0 if device == "cuda" else -1
)
# Limit context size to avoid token length issues
context = " ".join(chunks[:5])
if len(context) > 5000: # Approx token limit
context = context[:5000]
result = qa_pipeline(question=question, context=context)
logger.info(f"QA pipeline answer: '{result['answer']}' (score: {result['score']})")
return result["answer"]
except Exception as e:
logger.error(f"QA pipeline error: {str(e)}")
return ""
# Generation-based answering
def answer_with_generation(index, embeddings, chunks, question):
try:
logger.info(f"Answering with generation model: '{question}'")
global tokenizer, model
if tokenizer is None or model is None:
logger.info("Generation models not initialized, creating now...")
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
model = AutoModelForCausalLM.from_pretrained(
"distilgpt2",
device_map="auto",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
# Get embeddings for question
q_embedding = embedder.encode([question])
# Find relevant chunks
_, top_k_indices = index.search(q_embedding, k=3)
relevant_chunks = [chunks[i] for i in top_k_indices[0]]
context = " ".join(relevant_chunks)
# Limit context size to avoid token length issues
if len(context) > 4000:
context = context[:4000]
# Create prompt
prompt = f"Answer the following question based on this information:\n\nInformation: {context}\n\nQuestion: {question}\n\nDetailed answer:"
# Handle inputs
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
# Move inputs to the right device if needed
if torch.cuda.is_available():
inputs = {k: v.to('cuda') for k, v in inputs.items()}
# Generate answer
output = model.generate(
**inputs,
max_new_tokens=300,
temperature=0.7,
top_p=0.9,
do_sample=True,
num_beams=3,
no_repeat_ngram_size=2
)
# Decode and format answer
answer = tokenizer.decode(output[0], skip_special_tokens=True)
if "Detailed answer:" in answer:
answer = answer.split("Detailed answer:")[-1].strip()
logger.info(f"Generation answer: '{answer[:50]}...' (length: {len(answer)})")
return answer.strip()
except Exception as e:
logger.error(f"Generation error: {str(e)}")
return "I couldn't generate a good answer based on the PDF content."
# API route
@app.route('/')
def home():
return jsonify({"message": "PDF QA API is running!"})
@app.route('/ask', methods=['POST'])
def ask():
file = request.files.get("pdf")
question = request.form.get("question", "")
filepath = None
if not file or not question:
return jsonify({"error": "Both PDF file and question are required"}), 400
try:
filename = secure_filename(file.filename)
filepath = os.path.join(UPLOAD_FOLDER, filename)
file.save(filepath)
logger.info(f"Processing file: {filename}, Question: '{question}'")
# Process PDF and generate answer
text = extract_text(filepath)
if not text.strip():
return jsonify({"error": "Could not extract text from the PDF"}), 400
chunks = split_into_chunks(text)
if not chunks:
return jsonify({"error": "PDF content couldn't be processed"}), 400
try:
answer = answer_with_qa_pipeline(chunks, question)
except Exception as e:
logger.warning(f"QA pipeline failed: {str(e)}")
answer = ""
# If QA pipeline didn't give a good answer, try generation
if not answer or len(answer.strip()) < 20:
try:
logger.info("QA pipeline answer insufficient, trying generation...")
index, embeddings, chunks = setup_faiss(chunks)
answer = answer_with_generation(index, embeddings, chunks, question)
except Exception as e:
logger.error(f"Generation fallback failed: {str(e)}")
return jsonify({"error": "Failed to generate answer from PDF content"}), 500
return jsonify({"answer": answer})
except Exception as e:
logger.error(f"Error processing request: {str(e)}")
return jsonify({"error": f"An error occurred processing your request: {str(e)}"}), 500
finally:
# Always clean up, even if errors occur
if filepath:
cleanup_temp_files(filepath)
if __name__ == "__main__":
try:
# Initialize models at startup
initialize_models()
logger.info("Starting Flask application")
app.run(host="0.0.0.0", port=7860)
except Exception as e:
logger.critical(f"Failed to start application: {str(e)}") |