File size: 32,641 Bytes
1dfef0f
26f5620
03aebad
836d49c
26f5620
cd8de6f
 
26f5620
 
 
 
cd8de6f
d036780
cd8de6f
26f5620
2d14e5a
b0eca46
26f5620
87c8549
16c9822
 
 
01cc5e8
b7e4e52
aaf11bc
9b810cb
b7e4e52
 
3fb3844
ff8595b
 
 
95010ac
 
 
9b810cb
93a2770
 
 
6ead180
aaf11bc
c63d0c0
 
cf02c0e
65f51b7
069acab
26e01cd
0db0aa5
9eabe16
860b981
 
4d61251
cea2331
37ebfbe
fddf6b5
e0e02ab
fddf6b5
03aebad
 
450a49d
3970176
256d98a
65f51b7
 
 
 
 
3970176
450a49d
3970176
450a49d
3970176
450a49d
3970176
450a49d
65f51b7
450a49d
3970176
450a49d
3970176
65f51b7
15e7f51
7df3234
26f5620
 
 
1dfef0f
26f5620
 
 
 
 
 
 
 
ef3d9bb
26f5620
7df3234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26f5620
 
 
9af2eae
26f5620
 
 
 
 
 
 
7240bca
ef3d9bb
26f5620
 
 
 
1dfef0f
26f5620
 
 
 
 
 
 
 
ef3d9bb
26f5620
 
93a2770
 
 
 
3970176
93a2770
 
 
 
 
 
 
3970176
 
93a2770
3970176
 
 
 
93a2770
3970176
 
 
 
93a2770
3970176
 
 
93a2770
3970176
 
 
 
 
 
 
 
 
 
93a2770
3970176
 
 
 
93a2770
 
95010ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26f5620
ac6b8be
 
 
 
 
 
 
9027aff
 
ac6b8be
 
 
 
 
 
 
26f5620
 
 
 
 
 
 
70f8384
ac6b8be
 
 
b997ea4
 
 
 
 
 
 
 
 
 
 
 
29304ec
 
 
 
 
 
 
 
 
 
ac6b8be
b997ea4
ac6b8be
 
29304ec
 
 
 
 
 
257f406
 
 
 
31f3113
 
 
ee6b900
31f3113
ee6b900
31f3113
 
 
 
ee6b900
 
31f3113
 
 
ee6b900
 
 
31f3113
ee6b900
31f3113
ee6b900
257f406
 
5a9cf8b
 
26e01cd
5a9cf8b
c63d0c0
cf02c0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c63d0c0
cf02c0e
 
 
 
c63d0c0
6ead180
 
cf02c0e
 
 
c63d0c0
9b810cb
 
c63d0c0
6ead180
cf02c0e
6ead180
 
 
65f51b7
 
 
 
 
 
 
5a9cf8b
2131451
9d72879
0db0aa5
 
9eabe16
0db0aa5
fddf6b5
f1d6b50
37ebfbe
fddf6b5
 
 
 
f1d6b50
fddf6b5
94dcdd5
0db0aa5
37ebfbe
5a9cf8b
 
2131451
c648e7c
5a9cf8b
 
 
2131451
 
37ebfbe
5a9cf8b
 
 
26e01cd
5a9cf8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26e01cd
 
 
65f51b7
26e01cd
65f51b7
26e01cd
 
 
 
65f51b7
26e01cd
 
 
 
 
 
5a9cf8b
26e01cd
5a9cf8b
02f4c11
5a9cf8b
 
 
26e01cd
6ead180
 
 
 
 
26e01cd
5a9cf8b
 
 
26e01cd
 
6ead180
 
 
 
 
 
 
 
 
 
94e7570
9b810cb
65f51b7
 
 
9027aff
26f5620
65f51b7
9027aff
65f51b7
26f5620
65f51b7
9027aff
65f51b7
26f5620
65f51b7
 
9027aff
 
7240bca
65f51b7
26f5620
9027aff
 
 
65f51b7
 
 
 
 
3cc3529
 
 
67f0c93
3cc3529
 
 
 
 
 
 
 
 
 
 
 
 
 
67f0c93
 
 
 
 
 
3cc3529
67f0c93
 
 
3cc3529
67f0c93
 
 
 
 
3cc3529
67f0c93
 
 
 
 
3cc3529
67f0c93
 
3cc3529
65f51b7
 
 
3cc3529
 
 
 
 
 
65f51b7
3cc3529
 
 
 
65f51b7
3cc3529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65f51b7
 
67f0c93
65f51b7
3cc3529
67f0c93
 
3cc3529
 
 
 
 
 
 
 
 
67f0c93
3cc3529
67f0c93
3cc3529
65f51b7
 
 
 
67f0c93
 
 
 
 
 
 
 
 
 
 
3cc3529
 
 
67f0c93
3cc3529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65f51b7
 
3cc3529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65f51b7
3cc3529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65f51b7
 
3cc3529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65f51b7
 
3cc3529
 
 
 
 
 
65f51b7
 
3cc3529
65f51b7
 
 
 
3cc3529
 
65f51b7
 
 
 
d977a88
 
 
 
3cc3529
d977a88
3cc3529
d977a88
 
3cc3529
d977a88
 
 
 
 
 
3cc3529
d977a88
 
 
 
 
3cc3529
d977a88
3cc3529
d977a88
 
 
 
 
 
 
 
 
 
5a9cf8b
 
3cc3529
5a9cf8b
9027aff
5a5c64e
 
 
 
 
 
 
 
 
 
 
ef3d9bb
5a5c64e
 
 
 
 
 
 
 
 
 
 
 
ef3d9bb
9027aff
e0e02ab
ef3d9bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26f5620
 
ef3d9bb
 
5a5c64e
 
a28328c
ef3d9bb
 
 
 
 
26f5620
4a5b7c8
 
ef3d9bb
4a5b7c8
a28328c
4a5b7c8
 
 
 
a28328c
4a5b7c8
 
3fb3844
4a5b7c8
 
 
 
a28328c
4a5b7c8
 
ef3d9bb
 
 
 
 
 
a28328c
 
 
 
ef3d9bb
 
 
26f5620
ef3d9bb
 
e844a7f
a1fdb15
 
ef3d9bb
 
a28328c
ef3d9bb
 
a1fdb15
a28328c
a1fdb15
26f5620
 
cd8de6f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
# agent.py

import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_community.document_loaders import ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
from sentence_transformers import SentenceTransformer
from langchain.embeddings.base import Embeddings
from typing import List
import numpy as np
import yaml

import pandas as pd
import uuid
import requests
import json
from langchain_core.documents import Document
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings

from youtube_transcript_api import YouTubeTranscriptApi
from youtube_transcript_api._errors import TranscriptsDisabled, VideoUnavailable
import re

from langchain_community.document_loaders import TextLoader, PyMuPDFLoader
from docx import Document as DocxDocument
import openpyxl
from io import StringIO

from transformers import BertTokenizer, BertModel
import torch
import torch.nn.functional as F
from langchain_community.chat_models import ChatOpenAI
from langchain_community.tools import Tool
import time
from huggingface_hub import InferenceClient
from langchain_community.llms import HuggingFaceHub
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from huggingface_hub import login
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig
from langchain_huggingface import HuggingFaceEndpoint


load_dotenv()


@tool
def calculator(inputs: dict):
    """Perform mathematical operations based on the operation provided."""
    a = inputs.get("a")
    b = inputs.get("b")
    operation = inputs.get("operation")
    
    if operation == "add":
        return a + b
    elif operation == "subtract":
        return a - b
    elif operation == "multiply":
        return a * b
    elif operation == "divide":
        if b == 0:
            return "Error: Division by zero"
        return a / b
    elif operation == "modulus":
        return a % b
    else:
        return "Unknown operation"
        

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results.
    
    Args:
        query: The search query."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return formatted_search_docs


    
@tool
def wikidata_query(query: str) -> str:
    """
    Run a SPARQL query on Wikidata and return results.
    """
    endpoint_url = "https://query.wikidata.org/sparql"
    headers = {
        "Accept": "application/sparql-results+json"
    }
    response = requests.get(endpoint_url, headers=headers, params={"query": query})
    data = response.json()
    return json.dumps(data, indent=2)


@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results.
    
    Args:
        query: The search query."""
    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return formatted_search_docs

@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.
    
    Args:
        query: The search query."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ])
    return formatted_search_docs



@tool
def analyze_attachment(file_path: str) -> str:
    """
    Analyzes attachments including PY, PDF, TXT, DOCX, and XLSX files and returns text content.

    Args:
        file_path: Local path to the attachment.
    """
    if not os.path.exists(file_path):
        return f"File not found: {file_path}"

    try:
        ext = file_path.lower()

        if ext.endswith(".pdf"):
            loader = PyMuPDFLoader(file_path)
            documents = loader.load()
            content = "\n\n".join([doc.page_content for doc in documents])

        elif ext.endswith(".txt") or ext.endswith(".py"):
            # Both .txt and .py are plain text files
            with open(file_path, "r", encoding="utf-8") as file:
                content = file.read()

        elif ext.endswith(".docx"):
            doc = DocxDocument(file_path)
            content = "\n".join([para.text for para in doc.paragraphs])

        elif ext.endswith(".xlsx"):
            wb = openpyxl.load_workbook(file_path, data_only=True)
            content = ""
            for sheet in wb:
                content += f"Sheet: {sheet.title}\n"
                for row in sheet.iter_rows(values_only=True):
                    content += "\t".join([str(cell) if cell is not None else "" for cell in row]) + "\n"

        else:
            return "Unsupported file format. Please use PY, PDF, TXT, DOCX, or XLSX."

        return content[:3000]  # Limit output size for readability

    except Exception as e:
        return f"An error occurred while processing the file: {str(e)}"


@tool
def get_youtube_transcript(url: str) -> str:
    """
    Fetch transcript text from a YouTube video.
    
    Args:
        url (str): Full YouTube video URL.
    
    Returns:
        str: Transcript text as a single string.
    
    Raises:
        ValueError: If no transcript is available or URL is invalid.
    """
    try:
        # Extract video ID
        video_id = extract_video_id(url)
        transcript = YouTubeTranscriptApi.get_transcript(video_id)

        # Combine all transcript text
        full_text = " ".join([entry['text'] for entry in transcript])
        return full_text

    except (TranscriptsDisabled, VideoUnavailable) as e:
        raise ValueError(f"Transcript not available: {e}")
    except Exception as e:
        raise ValueError(f"Failed to fetch transcript: {e}")

@tool
def extract_video_id(url: str) -> str:
    """
    Extract the video ID from a YouTube URL.
    """
    match = re.search(r"(?:v=|youtu\.be/)([A-Za-z0-9_-]{11})", url)
    if not match:
        raise ValueError("Invalid YouTube URL")
    return match.group(1)




# -----------------------------
# Load configuration from YAML
# -----------------------------
with open("config.yaml", "r") as f:
    config = yaml.safe_load(f)

provider = config["provider"]
model_config = config["models"][provider]

#prompt_path = config["system_prompt_path"]
enabled_tool_names = config["tools"]


# -----------------------------
# Load system prompt
# -----------------------------
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()

# System message
sys_msg = SystemMessage(content=system_prompt)


# -----------------------------
# Map tool names to functions
# -----------------------------
tool_map = {
    "math": calculator,
    "wiki_search": wiki_search,
    "web_search": web_search,
    "arvix_search": arvix_search,
    "get_youtube_transcript": get_youtube_transcript,
    "extract_video_id": extract_video_id,
    "analyze_attachment": analyze_attachment,
    "wikidata_query": wikidata_query
}

# Then define which tools you want enabled
enabled_tool_names = [
    "math",
    "wiki_search",
    "web_search",
    "arvix_search",
    "get_youtube_transcript",
    "extract_video_id",
    "analyze_attachment",
    "wikidata_query"
]


tools = [tool_map[name] for name in enabled_tool_names]

tools = []
for name in enabled_tool_names:
    if name in tool_map:
        tools.append(tool_map[name])
    else:
        print(f"โš ๏ธ Warning: Tool '{name}' not found in tool_map. Skipping.")

# -------------------------------
# Step 2: Load the JSON file or tasks (Replace this part if you're loading tasks dynamically)
# -------------------------------
from fastapi import FastAPI, Request
from langchain_core.documents import Document
import uuid

app = FastAPI()

@app.post("/start")
async def start_questions(request: Request):
    data = await request.json()
    questions = data.get("questions", [])

    docs = []
    for task in questions:
        question_text = task.get("question", "").strip()
        if not question_text:
            continue

        task["id"] = str(uuid.uuid4())
        docs.append(Document(page_content=question_text, metadata=task))

    return {"message": f"Loaded {len(docs)} questions", "docs": [doc.page_content for doc in docs]}




# -------------------------------
# Step 4: Set up BERT Embeddings and FAISS VectorStore
# -------------------------------

# -----------------------------
# 1. Define Custom BERT Embedding Model
# -----------------------------
class BERTEmbeddings(Embeddings):
    def __init__(self, model_name='bert-base-uncased'):
        self.tokenizer = BertTokenizer.from_pretrained(model_name)
        self.model = BertModel.from_pretrained(model_name)
        self.model.eval()  # Set model to eval mode

    def embed_documents(self, texts):
        inputs = self.tokenizer(texts, return_tensors='pt', padding=True, truncation=True)
        with torch.no_grad():
            outputs = self.model(**inputs)
        embeddings = outputs.last_hidden_state.mean(dim=1)
        embeddings = F.normalize(embeddings, p=2, dim=1)  # Normalize for cosine similarity
        return embeddings.cpu().numpy()

    def embed_query(self, text):
        return self.embed_documents([text])[0]


# -----------------------------
# 2. Initialize Embedding Model
# -----------------------------
embedding_model = BERTEmbeddings()


# -----------------------------
# 3. Prepare Documents
# -----------------------------
docs = [
    Document(page_content="Mercedes Sosa released many albums between 2000 and 2009.", metadata={"id": 1}),
    Document(page_content="She was a prominent Argentine folk singer.", metadata={"id": 2}),
    Document(page_content="Her album 'Al Despertar' was released in 1998.", metadata={"id": 3}),
    Document(page_content="She continued releasing music well into the 2000s.", metadata={"id": 4}),
]


# -----------------------------
# 4. Create FAISS Vector Store
# -----------------------------
vector_store = FAISS.from_documents(docs, embedding_model)
vector_store.save_local("faiss_index")


# -----------------------------
# 6. Create LangChain Retriever Tool
# -----------------------------
retriever = vector_store.as_retriever()

question_retriever_tool = create_retriever_tool(
    retriever=retriever,
    name="Question_Search",
    description="A tool to retrieve documents related to a user's question."
)



# Define the LLM before using it
#llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo") # or "gpt-3.5-turbo" "gpt-4"
#llm = ChatMistralAI(model="mistral-7b-instruct-v0.1")


# Get the Hugging Face API token from the environment variable
#hf_token = os.getenv("HF_TOKEN")


llm = HuggingFaceEndpoint(
    repo_id="HuggingFaceH4/zephyr-7b-beta",
    task="text-generation",
    huggingfacehub_api_token=os.getenv("HF_TOKEN"),
    temperature=0.7,
    max_new_tokens=512
)

# Initialize LangChain agent
agent = initialize_agent(
    tools=tools,
    llm=llm,
    agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    verbose=True
)




# -------------------------------
# Step 8: Use the Planner, Classifier, and Decision Logic
# -------------------------------

def process_question(question):
    # Step 1: Planner generates the task sequence
    tasks = planner(question)
    print(f"Tasks to perform: {tasks}")

    # Step 2: Classify the task (based on question)
    task_type = task_classifier(question)
    print(f"Task type: {task_type}")

    # Step 3: Use the classifier and planner to decide on the next task or node
    state = {"question": question, "last_response": ""}
    next_task = decide_task(state)
    print(f"Next task: {next_task}")

    # Step 4: Use node skipper logic (skip if needed)
    skip = node_skipper(state)
    if skip:
        print(f"Skipping to {skip}")
        return skip  # Or move directly to generating answer

    # Step 5: Execute task (with error handling)
    try:
        if task_type == "wiki_search":
            response = wiki_tool(question)
        elif task_type == "math":
            response = calc_tool(question)
        else:
            response = "Default answer logic"
        
        # Step 6: Final response formatting
        final_response = final_answer_tool(state, {'wiki_search': response})
        return final_response
    
    except Exception as e:
        print(f"Error executing task: {e}")
        return "Sorry, I encountered an error processing your request."


# Run the process
question = "How many albums did Mercedes Sosa release between 2000 and 2009?"
response = agent.invoke(question)
print("Final Response:", response)




def retriever(state: MessagesState):
    """Retriever node using similarity scores for filtering"""
    query = state["messages"][0].content
    results = vector_store.similarity_search_with_score(query, k=4)  # top 4 matches
    
    # Dynamically adjust threshold based on query complexity
    threshold = 0.75 if "who" in query else 0.8
    filtered = [doc for doc, score in results if score < threshold]

    # Provide a default message if no documents found
    if not filtered:
        example_msg = HumanMessage(content="No relevant documents found.")
    else:
        content = "\n\n".join(doc.page_content for doc in filtered)
        example_msg = HumanMessage(
            content=f"Here are relevant reference documents:\n\n{content}"
        )

    return {"messages": [sys_msg] + state["messages"] + [example_msg]}



# ----------------------------------------------------------------
# LLM Loader
# ----------------------------------------------------------------
def get_llm(provider: str, config: dict):
    if provider == "google":
        from langchain_google_genai import ChatGoogleGenerativeAI
        return ChatGoogleGenerativeAI(model=config["model"], temperature=config["temperature"])

    elif provider == "groq":
        from langchain_groq import ChatGroq
        return ChatGroq(model=config["model"], temperature=config["temperature"])

    elif provider == "huggingface":
        from langchain_huggingface import ChatHuggingFace
        from langchain_huggingface import HuggingFaceEndpoint
        return ChatHuggingFace(
            llm=HuggingFaceEndpoint(url=config["url"], temperature=config["temperature"])
        )

    else:
        raise ValueError(f"Invalid provider: {provider}")




# ----------------------------------------------------------------
# Planning & Execution Logic
# ----------------------------------------------------------------
def planner(question: str, tools: list) -> list:
    question = question.lower().strip()

    # Define intent-based keywords (broad categories)
    intent_keywords = {
        "math": ["calculate", "evaluate", "add", "subtract", "multiply", "divide", "modulus", "plus", "minus", "times"],
        "wiki_search": ["who is", "what is", "define", "explain", "tell me about", "overview of"],
        "web_search": ["search", "find", "look up", "google", "latest news", "current info"],
        "arxiv": ["arxiv", "research paper", "scientific paper", "preprint"],
        "youtube": ["youtube", "watch", "play video", "show me a video"],
        "video_analysis": ["analyze video", "summarize video", "video content"],
        "data_analysis": ["analyze", "plot", "graph", "data", "visualize"],
        "wikidata_query": ["wikidata", "sparql", "run sparql", "query wikidata"],
        "general_qa": ["why", "how", "difference between", "compare", "what happens", "reason for", "cause of", "effect of"]
    }

    matched_tools = []

    # Try to find tools whose description matches intent
    for intent, keywords in intent_keywords.items():
        if any(keyword in question for keyword in keywords):
            for tool in tools:
                description = getattr(tool, "description", "").lower()
                name = getattr(tool, "name", "").lower()

                # Match based on intent keywords appearing in tool description or name
                if intent in description or intent in name:
                    matched_tools.append(tool)

            # Break after first matching intent โ€” you can remove this if you want to allow multi-intent matching
            if matched_tools:
                break

    # Fallback 1: try using general-purpose tools if available
    if not matched_tools:
        matched_tools = [
            tool for tool in tools 
            if "default" in getattr(tool, "name", "").lower() 
            or "qa" in getattr(tool, "description", "").lower()
        ]

    # Fallback 2: return first tool to prevent failure
    return matched_tools if matched_tools else [tools[0]]



def task_classifier(question: str) -> str:
    question = question.lower().strip()

    # Context-aware intent patterns
    if any(phrase in question for phrase in [
        "calculate", "how much is", "what is the result of", "evaluate", "solve"
    ]) or any(op in question for op in ["add", "subtract", "multiply", "divide", "modulus", "plus", "minus", "times"]):
        return "math"

    elif any(phrase in question for phrase in [
        "who is", "what is", "define", "explain", "tell me about", "give me an overview of"
    ]):
        return "wiki_search"

    elif any(phrase in question for phrase in [
        "search", "find", "look up", "google", "get the latest", "current news", "trending"
    ]):
        return "web_search"

    elif any(phrase in question for phrase in [
        "arxiv", "latest research", "scientific paper", "research paper", "preprint"
    ]):
        return "arxiv"

    elif any(phrase in question for phrase in [
        "youtube", "watch", "play the video", "show me a video"
    ]):
        return "youtube"

    elif any(phrase in question for phrase in [
        "analyze video", "summarize video", "what happens in the video", "video content"
    ]):
        return "video_analysis"

    elif any(phrase in question for phrase in [
        "analyze", "visualize", "plot", "graph", "inspect data", "explore dataset"
    ]):
        return "data_analysis"

    elif any(phrase in question for phrase in [
        "sparql", "wikidata", "query wikidata", "run sparql", "wikidata query"
    ]):
        return "wikidata_query"

    return "default"


# Function to extract math operation from the question

def extract_math_from_question(question: str):
    question = question.lower()

    # Map natural language to symbols
    ops = {
        "add": "+", "plus": "+",
        "subtract": "-", "minus": "-",
        "multiply": "*", "times": "*",
        "divide": "/", "divided by": "/",
        "modulus": "%", "mod": "%"
    }

    for word, symbol in ops.items():
        question = re.sub(rf"\b{word}\b", symbol, question)

    # Extract math expression like "12 + 5"
    match = re.search(r'(\d+)\s*([\+\-\*/%])\s*(\d+)', question)
    if match:
        num1 = int(match.group(1))
        operator = match.group(2)
        num2 = int(match.group(3))
        return {
            "a": num1,
            "b": num2,
            "operation": {
                "+": "add",
                "-": "subtract",
                "*": "multiply",
                "/": "divide",
                "%": "modulus"
            }[operator]
        }
    return None



# Example tool set (adjust these to match your actual tool names)
tools = {
    "math": calc_tool,          # Example tool for math tasks
    "wiki_search": wiki_tool,   # Example tool for wiki search tasks
    "retriever": retriever_tool, # Example tool for retriever tasks
    "default": default_tool     # Fallback tool
}

# The task order can also include the tools for each task
priority_order = [
    {"task": "math", "tool": "math"},        # Priority task and tool
    {"task": "wiki_search", "tool": "wiki_search"},
    {"task": "retriever", "tool": "retriever"},
    {"task": "default", "tool": "default"}  # Fallback tool
]

def decide_task(state: dict) -> str:
    """Decides which task to perform based on the current state."""
    
    # Get the list of tasks from the planner
    tasks = planner(state["question"])
    print(f"Available tasks: {tasks}")  # Debugging: show all possible tasks
    
    # Check if the tasks list is empty or invalid
    if not tasks:
        print("โŒ No valid tasks were returned from the planner.")
        return "default"  # Return a default task if no tasks were generated

    # If there are multiple tasks, we can prioritize based on certain conditions
    task = tasks[0]  # Default to the first task in the list
    if len(tasks) > 1:
        print(f"โš ๏ธ Multiple tasks found. Deciding based on priority.")
        # Example logic to prioritize tasks, adjust based on your use case
        task = prioritize_tasks(tasks)
    
    print(f"Decided on task: {task}")  # Debugging: show the final task
    return task


def prioritize_tasks(tasks: list) -> str:
    """Prioritize tasks based on certain conditions or criteria, including tools."""
    # Sort tasks based on priority_order mapping
    for priority in priority_order:
        # Check if any task matches the priority task type
        for task in tasks:
            if priority["task"] in task:
                print(f"โœ… Prioritizing task: {task} with tool: {priority['tool']}")  # Debugging: show the chosen task and tool
                # Assign the correct tool based on the task
                tool = tools.get(priority["tool"], tools["default"])  # Default to 'default_tool' if not found
                return task, tool

    # If no priority task is found, return the first task with its default tool
    return tasks[0], tools["default"]


def process_question(question: str):
    """Process the question and route it to the appropriate tool."""
    # Get the tasks from the planner
    tasks = planner(question)
    print(f"Tasks to perform: {tasks}")

    task_type, tool = decide_task({"question": question})
    print(f"Next task: {task_type} with tool: {tool}")

    if node_skipper({"question": question}):
        print(f"Skipping task: {task_type}")
        return "Task skipped."

    try:
        # Execute the corresponding tool for the task type
        if task_type == "wiki_search":
            response = tool.run(question)  # Assuming tool is wiki_tool
        elif task_type == "math":
            response = tool.run(question)  # Assuming tool is calc_tool
        elif task_type == "retriever":
            response = tool.run(question)  # Assuming tool is retriever_tool
        else:
            response = tool.run(question)  # Default tool

        return generate_final_answer({"question": question}, {task_type: response})

    except Exception as e:
        print(f"โŒ Error: {e}")
        return f"Sorry, I encountered an error: {str(e)}"




# To store previously asked questions and timestamps (simulating state persistence)
recent_questions = {}

def node_skipper(state: dict) -> bool:
    """
    Determines whether to skip the task based on the state.
    This could include:
    1. Repeated or similar questions
    2. Irrelevant or empty questions
    3. Tasks that have already been processed recently
    """
    question = state.get("question", "").strip()
    
    if not question:
        print("โŒ Skipping: Empty or invalid question.")
        return True  # Skip if no valid question

    # 1. Skip if the question has already been asked recently (within a given time window)
    # Here, we're using a simple example with a 5-minute window (300 seconds).
    if question in recent_questions:
        last_asked_time = recent_questions[question]
        time_since_last_ask = time.time() - last_asked_time
        if time_since_last_ask < 300:  # 5-minute threshold
            print(f"โŒ Skipping: The question has been asked recently. Time since last ask: {time_since_last_ask:.2f} seconds.")
            return True  # Skip if the question was asked within the last 5 minutes
    
    # 2. Skip if the question is irrelevant or not meaningful enough
    irrelevant_keywords = ["blah", "nothing", "invalid", "nonsense"]
    if any(keyword in question.lower() for keyword in irrelevant_keywords):
        print("โŒ Skipping: Irrelevant or nonsense question.")
        return True  # Skip if the question contains irrelevant keywords

    # 3. Skip if the task has already been completed for this question (based on a unique task identifier)
    if "last_response" in state and state["last_response"]:
        print("โŒ Skipping: Task has already been processed recently.")
        return True  # Skip if a response has already been given

    # 4. Skip based on a condition related to the task itself
    # Example: Skip math-related tasks if the result is already known or trivial
    if "math" in state.get("question", "").lower():
        # If math is trivial (like "What is 2+2?")
        trivial_math = ["2 + 2", "1 + 1", "3 + 3"]
        if any(trivial_question in question for trivial_question in trivial_math):
            print(f"โŒ Skipping trivial math question: {question}")
            return True  # Skip if the math question is trivial
    
    # 5. Skip based on external factors (e.g., current time, system load, etc.)
    # Example: Avoid processing tasks at night if that's part of the business logic
    current_hour = time.localtime().tm_hour
    if current_hour >= 22 or current_hour < 6:
        print("โŒ Skipping: It's night time, not processing tasks.")
        return True  # Skip tasks during night time (e.g., between 10 PM and 6 AM)

    # If none of the conditions matched, don't skip the task
    return False

# Update recent questions (for simulating repeated question check)
def update_recent_questions(question: str):
    """Update the recent questions dictionary with the current timestamp."""
    recent_questions[question] = time.time()



def generate_final_answer(state: dict, task_results: dict) -> str:
    """Generate a final answer based on the results of the task."""
    if "wiki_search" in task_results:
        return f"๐Ÿ“š Wiki Summary:\n{task_results['wiki_search']}"
    elif "math" in task_results:
        return f"๐Ÿงฎ Math Result: {task_results['math']}"
    elif "retriever" in task_results:
        return f"๐Ÿ” Retrieved Info: {task_results['retriever']}"
    else:
        return "๐Ÿค– Unable to generate a specific answer."


def answer_question(question: str) -> str:
    """Process a single question and return the answer."""
    print(f"Processing question: {question[:50]}...")  # Debugging: show first 50 chars

    # Wrap the question in a HumanMessage from langchain_core (assuming langchain is used)
    messages = [HumanMessage(content=question)]
    response = graph.invoke({"messages": messages})  # Assuming `graph` is defined elsewhere
    
    # Extract the answer from the response
    answer = response['messages'][-1].content
    return answer[14:]  # Assuming 'answer[14:]' is correct based on your example


def process_all_tasks(tasks: list):
    """Process a list of tasks."""
    results = {}

    for task in tasks:
        question = task.get("question", "").strip()
        if not question:
            print(f"Skipping task with missing or empty 'question': {task}")
            continue

        print(f"\n๐ŸŸข Processing Task: {task['task_id']} - Question: {question}")

        # Call the existing process_question logic
        response = process_question(question)
        
        print(f"โœ… Response: {response}")
        results[task['task_id']] = response

    return results





## Langgraph

# Build graph function
provider = "huggingface"

model_config = {
    "repo_id": "HuggingFaceH4/zephyr-7b-beta",
    "task": "text-generation",
    "temperature": 0.7,
    "max_new_tokens": 512,
    "huggingfacehub_api_token": os.getenv("HF_TOKEN")
}

def build_graph(provider, model_config):
    # Step 1: Initialize the LLM
    def get_llm(provider: str, config: dict):
        if provider == "huggingface":
            from langchain_huggingface import HuggingFaceEndpoint
            return HuggingFaceEndpoint(
                repo_id=config["repo_id"],
                task=config["task"],
                huggingfacehub_api_token=config["huggingfacehub_api_token"],
                temperature=config["temperature"],
                max_new_tokens=config["max_new_tokens"]
            )
        else:
            raise ValueError(f"Unsupported provider: {provider}")
    
    llm = get_llm(provider, model_config)
    
    # -------------------------------
    # Step 6: Define LangChain Tools
    # -------------------------------
    calc_tool = calculator  # Math operations tool
    web_tool = web_search    # Web search tool
    wiki_tool = wiki_search  # Wikipedia search tool
    arvix_tool = arvix_search  # Arxiv search tool
    youtube_tool = get_youtube_transcript  # YouTube transcript extraction
    video_tool = extract_video_id  # Video ID extraction tool
    analyze_tool = analyze_attachment  # File analysis tool
    wikiq_tool = wikidata_query  # Wikidata query tool
    
    # -------------------------------
    # Step 7: Create the Planner-Agent Logic
    # -------------------------------
    # Define tools list
    tools = [
        wiki_tool, 
        calc_tool, 
        web_tool, 
        arvix_tool,
        youtube_tool, 
        video_tool, 
        analyze_tool, 
        wikiq_tool
    ]
    
    # Step 8: Bind tools to the LLM
    llm_with_tools = llm.bind_tools(tools)

    # Return the LLM with tools bound
    return llm_with_tools



    
    # Initialize system message
    sys_msg = SystemMessage(content="You are a helpful assistant.")
    
    # Define the retriever function
    def retriever(state: MessagesState):
        user_query = state["messages"][0].content
        similar_docs = vector_store.similarity_search(user_query)
    
        if not similar_docs:
            wiki_result = wiki_tool.run(user_query)
            return {
                "messages": [
                    sys_msg,
                    state["messages"][0],
                    HumanMessage(content=f"Using Wikipedia search:\n\n{wiki_result}")
                ]
            }
        else:
            return {
                "messages": [
                    sys_msg,
                    state["messages"][0],
                    HumanMessage(content=f"Reference:\n\n{similar_docs[0].page_content}")
                ]
            }
    
    # Define the assistant function
    def assistant(state: MessagesState):
        return {"messages": [llm_with_tools.invoke(state["messages"])]}
    
    # Define condition for tools usage
    def tools_condition(state: MessagesState) -> str:
        if "use tool" in state["messages"][-1].content.lower():
            return "tools"
        else:
            return "END"
    
    # Initialize the StateGraph
    builder = StateGraph(MessagesState)
    
    # Add nodes to the graph
    builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    
    # Set the entry point
    builder.set_entry_point("retriever")
    
    # Define edges
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")

    # Compile graph
    return builder.compile()