Spaces:
Running
Running
File size: 7,749 Bytes
bc6cd18 43b1849 bc6cd18 43b1849 bc6cd18 eecca4c bc6cd18 43b1849 bc6cd18 b506212 99a318c bc6cd18 2d88615 bc6cd18 ac01980 99a318c 6d361b8 ac01980 99a318c ac01980 6d361b8 43b1849 ac01980 2d88615 99c4ece d77f034 2d88615 bc6cd18 99a318c bc6cd18 99a318c bc6cd18 99a318c bc6cd18 2d88615 6d361b8 2d88615 99a318c 2d88615 99a318c ac01980 99a318c 6d361b8 99a318c 228a29d 99a318c 2d88615 99a318c bc6cd18 99a318c 2d88615 bc6cd18 99a318c b506212 99a318c b506212 99a318c b506212 99a318c b506212 99a318c b506212 99a318c 43b1849 2d88615 99a318c 2d88615 bc6cd18 2d88615 ac01980 b506212 bc6cd18 2d88615 6d361b8 2d88615 b506212 99a318c bc6cd18 43b1849 bc6cd18 2d88615 bc6cd18 2d88615 ac01980 99a318c 6c1d7d9 eecca4c 6c1d7d9 2d88615 6c1d7d9 99a318c 371a532 99a318c 371a532 ac01980 99a318c 2d88615 ac01980 99a318c 2d88615 d77f034 ac01980 d77f034 bc6cd18 d77f034 a711e94 b506212 a711e94 2d88615 d77f034 2d88615 d77f034 7838f2e bc6cd18 2d88615 d77f034 2d88615 d77f034 6c1d7d9 a711e94 bc6cd18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import os
import json
import random
import shutil
import tempfile
from urllib.parse import urlparse
import cv2
import numpy as np
from PIL import Image
import gradio as gr
from roboflow import Roboflow
def parse_roboflow_url(url: str):
parsed = urlparse(url)
parts = parsed.path.strip('/').split('/')
workspace = parts[0]
project = parts[1]
try:
version = int(parts[-1])
except ValueError:
version = int(parts[-2])
return workspace, project, version
def convert_seg_to_bbox(api_key: str, dataset_url: str, split_ratios=(0.8, 0.1, 0.1)):
# --- download segmentation export
rf = Roboflow(api_key=api_key)
ws, proj_name, ver = parse_roboflow_url(dataset_url)
version_obj = rf.workspace(ws).project(proj_name).version(ver)
dataset = version_obj.download("coco-segmentation")
root = dataset.location
# --- find the COCO JSON
ann_file = None
for dp, _, files in os.walk(root):
for f in files:
if f.lower().endswith('.json'):
ann_file = os.path.join(dp, f)
break
if ann_file:
break
if not ann_file:
raise FileNotFoundError(f"No JSON annotations under {root}")
coco = json.load(open(ann_file, 'r'))
images_info = {img['id']: img for img in coco['images']}
cat_ids = sorted(c['id'] for c in coco.get('categories', []))
id_to_index = {cid: idx for idx, cid in enumerate(cat_ids)}
# --- make a flat YOLO folder
out_root = tempfile.mkdtemp(prefix="yolov8_")
flat_img = os.path.join(out_root, "flat_images")
flat_lbl = os.path.join(out_root, "flat_labels")
os.makedirs(flat_img, exist_ok=True)
os.makedirs(flat_lbl, exist_ok=True)
# --- convert each segmentation to a YOLO bbox line
annos = {}
for anno in coco['annotations']:
img_id = anno['image_id']
poly = anno['segmentation'][0]
xs, ys = poly[0::2], poly[1::2]
x_min, x_max = min(xs), max(xs)
y_min, y_max = min(ys), max(ys)
w, h = x_max - x_min, y_max - y_min
cx, cy = x_min + w/2, y_min + h/2
iw, ih = images_info[img_id]['width'], images_info[img_id]['height']
line = (
f"{id_to_index[anno['category_id']]} "
f"{cx/iw:.6f} {cy/ih:.6f} {w/iw:.6f} {h/ih:.6f}"
)
annos.setdefault(img_id, []).append(line)
# --- locate the single images folder
img_src = None
for dp, _, files in os.walk(root):
if any(f.lower().endswith(('.jpg','.png','.jpeg')) for f in files):
img_src = dp
break
if not img_src:
raise FileNotFoundError(f"No images folder in {root}")
# --- copy images + write flat labels
name_to_id = {img['file_name']: img['id'] for img in coco['images']}
for fname, img_id in name_to_id.items():
src_path = os.path.join(img_src, fname)
if not os.path.isfile(src_path):
continue
shutil.copy(src_path, os.path.join(flat_img, fname))
with open(os.path.join(flat_lbl, fname.rsplit('.',1)[0] + ".txt"), 'w') as lf:
lf.write("\n".join(annos.get(img_id, [])))
# --- split filenames into train/valid/test lists
all_files = sorted([f for f in os.listdir(flat_img) if f.lower().endswith(('.jpg','.png','.jpeg'))])
random.shuffle(all_files)
n = len(all_files)
n_train = max(1, int(n * split_ratios[0]))
n_valid = max(1, int(n * split_ratios[1]))
# ensure we don’t overshoot
n_valid = min(n_valid, n - n_train - 1)
splits = {
"train": all_files[:n_train],
"valid": all_files[n_train:n_train+n_valid],
"test": all_files[n_train+n_valid:]
}
# --- create Roboflow‑friendly structure:
# out_root/images/{train,valid,test}
# out_root/labels/{train,valid,test}
for split, files in splits.items():
img_dir = os.path.join(out_root, "images", split)
lbl_dir = os.path.join(out_root, "labels", split)
os.makedirs(img_dir, exist_ok=True)
os.makedirs(lbl_dir, exist_ok=True)
for fn in files:
shutil.move(os.path.join(flat_img, fn), os.path.join(img_dir, fn))
shutil.move(os.path.join(flat_lbl, fn.rsplit('.',1)[0] + ".txt"),
os.path.join(lbl_dir, fn.rsplit('.',1)[0] + ".txt"))
# --- clean up flats
shutil.rmtree(flat_img)
shutil.rmtree(flat_lbl)
# --- build a few before/after previews
before, after = [], []
sample = random.sample(list(name_to_id.keys()), min(5, len(name_to_id)))
for fname in sample:
src = os.path.join(img_src, fname)
img = cv2.cvtColor(cv2.imread(src), cv2.COLOR_BGR2RGB)
seg_vis = img.copy()
for anno in coco['annotations']:
if anno['image_id'] != name_to_id[fname]:
continue
pts = np.array(anno['segmentation'][0], np.int32).reshape(-1, 2)
cv2.polylines(seg_vis, [pts], True, (255, 0, 0), 2)
box_vis = img.copy()
for line in annos.get(name_to_id[fname], []):
_, cxn, cyn, wnorm, hnorm = map(float, line.split())
iw, ih = images_info[name_to_id[fname]]['width'], images_info[name_to_id[fname]]['height']
w0, h0 = int(wnorm * iw), int(hnorm * ih)
x0 = int(cxn * iw - w0 / 2)
y0 = int(cyn * ih - h0 / 2)
cv2.rectangle(box_vis, (x0, y0), (x0+w0, y0+h0), (0, 255, 0), 2)
before.append(Image.fromarray(seg_vis))
after.append(Image.fromarray(box_vis))
project_slug = f"{proj_name}-detection"
return before, after, out_root, project_slug
def upload_and_train_detection(
api_key: str,
project_slug: str,
dataset_path: str,
project_license: str = "MIT",
project_type: str = "object-detection"
):
rf = Roboflow(api_key=api_key)
ws = rf.workspace()
# get-or-create your detection project
try:
proj = ws.project(project_slug)
except Exception:
proj = ws.create_project(
project_slug,
annotation=project_type,
project_type=project_type,
project_license=project_license
)
# upload the properly‑split folder
ws.upload_dataset(
dataset_path,
project_slug,
project_license=project_license,
project_type=project_type
)
# create a new version
version_num = proj.generate_version(settings={
"augmentation": {},
"preprocessing": {},
})
# enqueue training (now finds train/valid/test)
proj.version(str(version_num)).train()
# return the hosted endpoint URL
m = proj.version(str(version_num)).model
return f"{m['base_url']}{m['id']}?api_key={api_key}"
# --- Gradio UI ---
with gr.Blocks() as app:
gr.Markdown("## 🔄 Seg→BBox + Auto‐Upload/Train")
api_input = gr.Textbox(label="Roboflow API Key", type="password")
url_input = gr.Textbox(label="Segmentation Dataset URL")
run_btn = gr.Button("Convert to BBoxes")
before_g = gr.Gallery(columns=5, label="Before")
after_g = gr.Gallery(columns=5, label="After")
ds_state = gr.Textbox(visible=False)
slug_state = gr.Textbox(visible=False)
run_btn.click(
convert_seg_to_bbox,
inputs=[api_input, url_input],
outputs=[before_g, after_g, ds_state, slug_state]
)
gr.Markdown("## 🚀 Upload & Train Detection Model")
train_btn = gr.Button("Upload & Train")
url_out = gr.Textbox(label="Hosted Model Endpoint URL")
train_btn.click(
upload_and_train_detection,
inputs=[api_input, slug_state, ds_state],
outputs=[url_out]
)
if __name__ == "__main__":
app.launch()
|