File size: 2,777 Bytes
c19ca44
1de3e75
6ed30ff
 
1de3e75
 
 
 
 
 
 
 
9b9d7ba
0e63b35
 
 
 
 
 
 
 
 
 
 
 
66b4f26
 
c19ca44
d8f9c78
3960c62
7281cd9
 
1de3e75
9c81616
 
7bd5207
7281cd9
 
9c81616
7992ad0
9c81616
 
 
 
5ef1a3c
9c81616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abddc2a
9c81616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef1a3c
 
7281cd9
 
 
6ed30ff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---

pretty_name: ScanBot
license: cc-by-4.0
language:
  - en
tags:
  - robotics
  - instruction-following
  - vision-language
  - laser-scanning
  - multimodal
task_categories:
  - robotics
dataset_info:
  features:
    - name: wrist_camera
      dtype: image
    - name: rgb_gopro
      dtype: image   
    - name: instruction
      dtype: string
    - name: tcp_pose
      dtype: string
    - name: joint_states
      dtype: string
# data_files:
#   - path: train/train.jsonl
---



[![Project Page](https://img.shields.io/badge/Project%20Page-ScanBot-blue.svg)](https://ed1sonchen.github.io/ScanBot/) 


# ScanBot: Towards Intelligent Surface Scanning in Embodied Robotic Systems

<img src="Figures/introduction.png" alt="ScanBot" width="100%"/>


## 🧠 Dataset Summary
**ScanBot** is a dataset for instruction-conditioned, high-precision surface scanning with robots. Unlike existing datasets that focus on coarse tasks like grasping or navigation, ScanBot targets industrial laser scanning, where sub-millimeter accuracy and parameter stability are essential. It includes scanning trajectories across 12 objects and 6 task types, each driven by natural language instructions. The dataset provides synchronized RGB, depth, laser profiles, robot poses, and joint states.


## πŸ“¦ Use Cases

- Vision-Language Action (VLA)
- Instruction-Guided Surface Scanning
- 3D Surface Reconstruction
- Spatial Reasoning and Feature Localization
- Laser Profile Analysis for Inspection Tasks



## πŸ—‚οΈ Data Description
```

scanbot/

β”œβ”€β”€ cube1/

β”‚   β”œβ”€β”€ top_surface/

β”‚   β”‚   β”œβ”€β”€ path_001/

β”‚   β”‚   β”‚   β”œβ”€β”€ rgb/

β”‚   β”‚   β”‚   β”‚   └── ...

β”‚   β”‚   β”‚   β”œβ”€β”€ depth/

β”‚   β”‚   β”‚   β”‚   └── ...

|   |   |   |── 1746226187.997976_gopro.mp4  

β”‚   β”‚   β”‚   β”œβ”€β”€ robot_joint_states.csv

β”‚   β”‚   β”‚   β”œβ”€β”€ robot_tcp_poses.csv

β”‚   β”‚   β”‚   └── metadata.json

β”‚   β”‚   β”œβ”€β”€ path_002/

β”‚   β”‚   β”‚   └── ...

β”œβ”€β”€ cube2

β”œβ”€β”€ cylinder_red

β”œβ”€β”€ cylinder_white

└── ...

```

## πŸ’¬ Task Levels

Each scan is driven by an instruction that falls under one of the following task categories:

| Task Type | Description |
|-----------|-------------|
| T1        | Surface Scan |
| T2        | Geometry Focus |
| T3        | Spatial Reference |
| T4        | Functional Target |
| T5        | Defect Inspection |
| T6        | Comparative Analysis |

## πŸ› οΈ Hardware Setup

<img src="Figures/setup.png" alt="ScanBot Example" width="30%"/>

## πŸ“– Version Update

### Version 1.0
The initial version of ScanBot contains 197 tasks, and involves 12 different objects.