question_slug
stringlengths
3
77
title
stringlengths
1
183
slug
stringlengths
12
45
summary
stringlengths
1
160
author
stringlengths
2
30
certification
stringclasses
2 values
created_at
stringdate
2013-10-25 17:32:12
2025-04-12 09:38:24
updated_at
stringdate
2013-10-25 17:32:12
2025-04-12 09:38:24
hit_count
int64
0
10.6M
has_video
bool
2 classes
content
stringlengths
4
576k
upvotes
int64
0
11.5k
downvotes
int64
0
358
tags
stringlengths
2
193
comments
int64
0
2.56k
smallest-subarrays-with-maximum-bitwise-or
Easy Solution (Bit Manipulation) beats 100%
easy-solution-bit-manipulation-beats-100-tfie
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n youtube link - http
gopigaurav
NORMAL
2024-11-01T14:24:20.051400+00:00
2024-11-01T14:24:20.051437+00:00
9
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n youtube link - https://www.youtube.com/watch?v=PeouhGUGr7Q\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```python3 []\nfrom typing import List\n\nclass Solution:\n def smallestSubarrays(self, nums: List[int]) -> List[int]:\n n = len(nums)\n max_or_setbits = [-1] * 32\n ans = []\n\n for i in range(n - 1, -1, -1):\n cur = nums[i]\n pos = 0\n\n while cur:\n if cur & 1:\n max_or_setbits[pos] = i\n cur //= 2\n pos += 1\n\n max_index = max(max_or_setbits)\n ans.append(max_index - i + 1 if max_index != -1 else 1)\n\n return ans[::-1]\n\n```
0
0
['Python3']
0
smallest-subarrays-with-maximum-bitwise-or
C++ Solution || Using BIT MANIPULATION
c-solution-using-bit-manipulation-by-vai-zohp
Code\ncpp []\nclass Solution {\npublic:\n vector<int> smallestSubarrays(vector<int>& nums) {\n int n=nums.size();\n vector<int> ans;\n v
Vaibhav_Arya007
NORMAL
2024-10-17T10:54:01.850447+00:00
2024-10-17T10:54:01.850478+00:00
1
false
# Code\n```cpp []\nclass Solution {\npublic:\n vector<int> smallestSubarrays(vector<int>& nums) {\n int n=nums.size();\n vector<int> ans;\n vector<int> set_bits(32,-1);\n\n int maxOR=0;\n\n for(int i=n-1; i>=0; i--){\n maxOR |=nums[i];\n int curr=nums[i];\n\n int setting_pos=0;\n while(curr){\n if(curr&1){\n set_bits[setting_pos]=i;\n\n }\n curr/=2;\n setting_pos++;\n \n }\n\n int max_ind=*max_element(set_bits.begin(), set_bits.end());\n\n if(max_ind==-1){\n ans.push_back(1);\n }\n else{\n ans.push_back(max_ind-i+1);\n }\n\n }\n\n reverse(ans.begin(), ans.end());\n return ans;\n }\n};\n```
0
0
['C++']
0
smallest-subarrays-with-maximum-bitwise-or
Java Solution Time Complexity: O(N), Space Complexity: O(N)
java-solution-time-complexity-on-space-c-cu9d
Complexity\n- Time complexity:\nO(N)\n\n- Space complexity:\nO(N)\n\n# Code\njava []\nclass Solution {\n\n public int[] smallestSubarrays(int[] nums) {\n
Hash17
NORMAL
2024-10-13T19:21:35.142633+00:00
2024-10-13T19:21:35.142659+00:00
6
false
# Complexity\n- Time complexity:\n$$O(N)$$\n\n- Space complexity:\n$$O(N)$$\n\n# Code\n```java []\nclass Solution {\n\n public int[] smallestSubarrays(int[] nums) {\n int[] maximumBitWiseOR = new int[nums.length];\n maximumBitWiseOR[nums.length - 1] = nums[nums.length - 1];\n for (int index = nums.length - 2; index >= 0; index--)\n maximumBitWiseOR[index] = nums[index] | maximumBitWiseOR[index + 1];\n int[] smallestSubArrays = new int[nums.length];\n int[] currentBitCounts = new int[32];\n int start = 0;\n for (int end = 0; end < nums.length; end++) {\n append(currentBitCounts, nums[end]);\n while (start <= end && value(currentBitCounts) == maximumBitWiseOR[start]) {\n smallestSubArrays[start] = end - start + 1;\n remove(currentBitCounts, nums[start++]);\n }\n }\n return smallestSubArrays;\n }\n\n private int value(int[] currentBitCounts) {\n int value = 0;\n for (int index = 0; index < currentBitCounts.length; index++)\n if (currentBitCounts[index] > 0) value |= (1 << index);\n return value;\n }\n\n private void append(int[] currentBitCounts, int value) {\n for (int index = 0; index < currentBitCounts.length; index++)\n if ((value & (1 << index)) > 0) currentBitCounts[index]++;\n }\n\n private void remove(int[] currentBitCounts, int value) {\n for (int index = 0; index < currentBitCounts.length; index++)\n if ((value & (1 << index)) > 0) currentBitCounts[index]--;\n }\n}\n```
0
0
['Bit Manipulation', 'Java']
0
smallest-subarrays-with-maximum-bitwise-or
Brilliant use of data structures you could have ever seen! 🎀
brilliant-use-of-data-structures-you-cou-dfna
This is the first approach after brute force I came up with for this problem. Some times using nested data structures can come handy.\n\nTC: O(N x 32)\nSC: O(N
vedanty3
NORMAL
2024-10-02T19:26:38.299865+00:00
2024-10-02T19:26:38.299888+00:00
2
false
*This is the first approach after brute force I came up with for this problem. Some times using nested data structures can come handy.*\n\n*TC: O(N x 32)*\n*SC: O(N x 32)\nwhere 1e5 >= N >= 0*\n\n```\nclass Solution {\npublic:\n vector<int> smallestSubarrays(vector<int>& nums) {\n int n = nums.size();\n unordered_map<int, queue<int>>m;\n \n for(int i=0; i<n; ++i) {\n int bit = 0;\n int num = nums[i];\n \n while(num) {\n if(num&1) {\n m[bit].push(i);\n }\n \n num >>= 1;\n ++bit;\n }\n }\n \n vector<int>ans;\n \n for(int i=0; i<n; ++i) {\n int bit = 31;\n int max_len = 1;\n while(bit>=0) {\n if(m.find(bit)!=m.end()) {\n while(!m[bit].empty() and m[bit].front()<i) {\n m[bit].pop();\n }\n if(m[bit].empty()) {\n m.erase(bit);\n } else {\n max_len = max(max_len, m[bit].front()-i+1);\n }\n }\n --bit;\n }\n ans.push_back(max_len);\n }\n \n return ans;\n }\n};\n```
0
0
['Bit Manipulation', 'Queue']
0
smallest-subarrays-with-maximum-bitwise-or
scala onleliner. bitmap suffixes
scala-onleliner-bitmap-suffixes-by-vitit-bwd3
scala []\nobject Solution {\n import scala.util.chaining._\n import collection.immutable.BitSet\n def smallestSubarrays(nums: Array[Int]): Array[Int] =\n
vititov
NORMAL
2024-09-14T12:39:20.123528+00:00
2024-09-14T12:39:20.123562+00:00
1
false
```scala []\nobject Solution {\n import scala.util.chaining._\n import collection.immutable.BitSet\n def smallestSubarrays(nums: Array[Int]): Array[Int] =\n nums.toList.zipWithIndex.reverseIterator.scanLeft((Map.empty[Int,Int],0)){case ((aMap,acc),(num,i))=>\n (aMap ++ BitSet.fromBitMask(Array(num)).map(_ -> i), acc | num)\n }.drop(1).toList.reverse.pipe(sfx => (nums.indices.toArray zip sfx).map{case (i,(bMap,mx)) =>\n if(mx == 0) 1 else BitSet.fromBitMask(Array(mx)).iterator.map(bMap).max - i + 1\n })\n}\n\n```
0
0
['Hash Table', 'Bit Manipulation', 'Prefix Sum', 'Scala']
0
smallest-subarrays-with-maximum-bitwise-or
C++ | Sliding Window | Bit Manipulation
c-sliding-window-bit-manipulation-by-abh-ds5n
Intuition\n Describe your first thoughts on how to solve this problem. \nAs OR will always increase the value\nFor every index we find the maxOR value\nmaxOR va
abhishek10ghosh
NORMAL
2024-08-30T11:32:02.399189+00:00
2024-08-30T11:32:02.399223+00:00
15
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nAs OR will always increase the value\nFor every index we find the maxOR value\nmaxOR value at every index (i) is OR of every number from i to n\nThis can be done via sliding window and keeping a 30 bit array\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\nNow we have maxOR value every index i can take\nWe use sliding window to find the lenght of the shortest window which can make maxOR value at index i\n\nThe 30 bit size vector is used to check that do we still have a contributing 1 in current window, if no then remove the set bit at this position\n\n# Complexity\n- Time complexity: O(n)\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n\n- Space complexity: O(n)\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```cpp []\nclass Solution {\npublic:\n vector<int> smallestSubarrays(vector<int>& nums) {\n // or always increases value\n int n=nums.size();\n int currOr = 0;\n vector<int> maxOr(n); // max OR value starting at index i\n vector<int> v(32,0);\n for(int i=0;i<n;i++){\n for(int j=0;j<31;j++){\n if(nums[i] & (1<<j)){\n v[j]++;\n }\n }\n \n currOr|=nums[i];\n }\n\n\n for(int i=0;i<n;i++){\n maxOr[i] = currOr;\n \n for(int j=0;j<31;j++){\n if(nums[i] & (1<<j)){\n v[j]--;\n }\n if(v[j]==0){\n currOr = (currOr & (~(1<<j)));\n }\n }\n }\n\n // sliding window to find smallest subarray size\n currOr=0;\n int j=0;\n vector<int> ans(n);\n vector<int> bit(32,0);\n for(int i=0;i<n;i++){\n while(currOr < maxOr[i]){\n for(int k=0;k<31;k++){\n if(nums[j] & (1<<k)){\n bit[k]++;\n }\n }\n currOr|=nums[j];\n j++;\n }\n ans[i] = j-i;\n ans[i] = max(ans[i],1); //min value can be 1\n for(int k=0;k<31;k++){\n if(nums[i] & (1<<k)){\n bit[k]--;\n }\n if(bit[k]==0){\n currOr = (currOr & (~(1<<k)));\n }\n }\n \n }\n\n return ans;\n }\n};\n```
0
0
['Bit Manipulation', 'Sliding Window', 'C++']
0
smallest-subarrays-with-maximum-bitwise-or
lower_bound se kiya h
lower_bound-se-kiya-h-by-rohityadav2002-3ujf
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
RohitYadav2002
NORMAL
2024-07-31T06:34:08.345733+00:00
2024-07-31T06:34:08.345772+00:00
4
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\npublic:\n vector<int> smallestSubarrays(vector<int>& nums) {\n int n = nums.size();\n vector<vector<int>> setBitIdx(31);\n for(int i = 0; i < n; i++) {\n int val = nums[i];\n int idx = 0;\n while(val) {\n if(val % 2) setBitIdx[idx].push_back(i);\n val = val / 2;\n idx++;\n }\n }\n\n // Debugging Output (Optional)\n <!-- for(int i = 0; i < 31; i++) {\n for(int j = 0; j < setBitIdx[i].size(); j++) {\n cout << setBitIdx[i][j] << " ";\n } cout << endl;\n } -->\n\n vector<int> ans(n, 1);\n for(int i = 0; i < n; i++) {\n int maxi = i;\n for(int j = 0; j < 31; j++) {\n auto it = lower_bound(setBitIdx[j].begin(), setBitIdx[j].end(), i);\n if (it != setBitIdx[j].end()) {\n maxi = max(maxi, *it);\n }\n }\n ans[i] = maxi - i + 1;\n }\n return ans;\n }\n};\n\n```
0
0
['C++']
0
smallest-subarrays-with-maximum-bitwise-or
Simple Java Solution
simple-java-solution-by-sakshikishore-9o9b
Code\n\nclass Solution {\n public int[] smallestSubarrays(int[] nums) {\n int result[]=new int[nums.length];\n int max=0;\n for(int i=0;
sakshikishore
NORMAL
2024-07-27T02:34:56.832338+00:00
2024-07-27T02:34:56.832367+00:00
6
false
# Code\n```\nclass Solution {\n public int[] smallestSubarrays(int[] nums) {\n int result[]=new int[nums.length];\n int max=0;\n for(int i=0;i<nums.length;i++)\n {\n if(nums[i]>max)\n {\n max=nums[i];\n }\n }\n String str=Integer.toBinaryString(max);\n int ch[][]=new int[nums.length][str.length()];\n result[result.length-1]=1;\n int count=0;\n str=Integer.toBinaryString(nums[nums.length-1]);\n for(int i=str.length()-1;i>=0;i--)\n {\n if(str.charAt(i)==\'1\')\n {\n ch[nums.length-1][count]=1;\n }\n count++;\n }\n \n int start=nums.length-1;\n for(int i=nums.length-2;i>=0;i--)\n {\n int x=nums[i];\n count=0;\n while(x>0)\n {\n int p=( x & 1);\n if(p==1)\n {\n ch[i][count]=1;\n }\n x>>=1;\n count++;\n }\n for(int j=0;j<ch[i].length;j++)\n {\n ch[i][j]+=ch[i+1][j];\n }\n while(start!=i)\n {\n int flag=0;\n for(int j=0;j<ch[i].length;j++)\n {\n \n if(ch[i][j]!=0 && ch[i][j]-ch[start][j]==0)\n {\n \n flag=1;\n break;\n }\n }\n \n if(flag==0)\n {\n start--;\n }\n else\n {\n break;\n }\n }\n result[i]=start-i+1;\n\n }\n\n return result;\n\n }\n}\n```
0
0
['Java']
0
smallest-subarrays-with-maximum-bitwise-or
Rust Solution
rust-solution-by-rchaser53-fesv
Complexity\n- Time complexity:\nO(nm)\n\n- Space complexity:\nO(nm)\n\n# Code\n\nuse std::collections::*;\n\nimpl Solution {\n pub fn smallest_subarrays(nums:
rchaser53
NORMAL
2024-07-16T10:27:21.755269+00:00
2024-07-16T10:27:21.755299+00:00
0
false
# Complexity\n- Time complexity:\n$$O(n*m)$$\n\n- Space complexity:\n$$O(n*m)$$\n\n# Code\n```\nuse std::collections::*;\n\nimpl Solution {\n pub fn smallest_subarrays(nums: Vec<i32>) -> Vec<i32> {\n let n = nums.len();\n let mut result = vec![0;n];\n let mut memo = vec![VecDeque::new();35];\n\n for i in 0..n {\n let v = nums[i];\n for j in 0..35 {\n if v >> j & 1 == 1 {\n memo[j].push_back(i);\n }\n }\n }\n\n for i in 0..n {\n let mut max = i;\n for j in 0..35 {\n if !memo[j].is_empty() {\n max = max.max(memo[j][0]);\n\n if memo[j][0] == i {\n memo[j].pop_front();\n }\n }\n }\n\n result[i] = (max - i + 1) as i32;\n }\n\n result\n }\n}\n```
0
0
['Rust']
0
smallest-subarrays-with-maximum-bitwise-or
JAVA
java-by-manu-bharadwaj-bn-ih8x
Code\n\nclass Solution {\n public int[] smallestSubarrays(int[] nums) {\n int[] map = new int[32];\n int[] ans = new int[nums.length];\n
Manu-Bharadwaj-BN
NORMAL
2024-07-15T12:22:42.205602+00:00
2024-07-15T12:22:42.205623+00:00
26
false
# Code\n```\nclass Solution {\n public int[] smallestSubarrays(int[] nums) {\n int[] map = new int[32];\n int[] ans = new int[nums.length];\n for (int i = nums.length - 1; i >= 0; i--) {\n int num = nums[i];\n for (int j = 0; j <= 31; j++) {\n int mask = 1 << (j);\n if ((num & mask) > 0) {\n map[j] = i;\n }\n }\n int max = i;\n for (int e : map)\n max = Math.max(e, max);\n ans[i] = max - i + 1;\n }\n return ans;\n }\n}\n```
0
0
['Java']
1
smallest-subarrays-with-maximum-bitwise-or
Easy C++ Solution | Most Basic Approach
easy-c-solution-most-basic-approach-by-v-q0m8
Code\n\nclass Solution {\npublic:\n bool canRemove(vector<int>& bits, int numberToInsert){\n vector<int> bitValues(32, 0);\n add(bitValues, num
vedantgarg2004
NORMAL
2024-07-06T07:18:16.135032+00:00
2024-07-06T07:18:39.248645+00:00
12
false
# Code\n```\nclass Solution {\npublic:\n bool canRemove(vector<int>& bits, int numberToInsert){\n vector<int> bitValues(32, 0);\n add(bitValues, numberToInsert);\n\n for(int i=0; i<32; i++){\n if(bits[i] > 0 && bits[i] - bitValues[i] == 0) return false;\n }\n for(int i=0; i<32; i++) bits[i] = max(0, bits[i] - bitValues[i]);\n return true;\n }\n void add(vector<int>& bits, int number){ //add Bit Value of new element:\n int bitPos = 0;\n while(number > 0){\n if(number&1) bits[bitPos]++;\n number = number>>1;\n bitPos++;\n }\n }\n vector<int> smallestSubarrays(vector<int>& nums) {\n vector<int> ans(nums.size(), -1);\n\n queue<int> q;\n vector<int> bits(32,0);\n for(int i=nums.size()-1; i>=0; i--){\n q.push(nums[i]);\n\n add(bits, nums[i]);\n while(!q.empty() && canRemove(bits, q.front())) q.pop();\n ans[i] = q.size() == 0 ? 1 : q.size();\n }\n\n return ans;\n }\n};\n```
0
0
['C++']
0
smallest-subarrays-with-maximum-bitwise-or
C++ solution
c-solution-by-nguyenchiemminhvu-bpuw
\nclass Solution\n{\npublic:\n vector<int> smallestSubarrays(vector<int>& nums)\n {\n std::vector<int> res(nums.size(), 1);\n std::vector<in
nguyenchiemminhvu
NORMAL
2024-07-03T08:48:21.017909+00:00
2024-07-03T08:48:21.017933+00:00
0
false
```\nclass Solution\n{\npublic:\n vector<int> smallestSubarrays(vector<int>& nums)\n {\n std::vector<int> res(nums.size(), 1);\n std::vector<int> mask(32, -1);\n\n for (int i = nums.size() - 1; i >= 0; i--)\n {\n for (int imask = 0; imask < 32; imask++)\n {\n if (nums[i] & (1 << imask))\n {\n mask[imask] = i;\n }\n }\n\n int ifar = i;\n for (int imask = 0; imask < 32; imask++)\n {\n if (mask[imask] != -1)\n {\n ifar = std::max(ifar, mask[imask]);\n }\n }\n\n res[i] = ifar - i + 1;\n }\n\n return res;\n }\n};\n```
0
0
['C++']
0
smallest-subarrays-with-maximum-bitwise-or
Java Bit Manipulation Memoization Sliding Window
java-bit-manipulation-memoization-slidin-smgq
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
mot882000
NORMAL
2024-06-11T07:07:55.183148+00:00
2024-06-11T07:07:55.183183+00:00
8
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\n public int[] smallestSubarrays(int[] nums) {\n\n // 0. \uAC01 index\uC5D0\uC11C \uC2DC\uC791\uD574\uC11C or\uC5F0\uC0B0\uC744 \uD574\uB098\uAC14\uC744 \uB54C \uAC00\uC9C8 \uC218 \uC788\uB294 \uCD5C\uB300 \uAC12\uC774 \uC788\uACE0\n // \uADF8 \uCD5C\uB300\uAC12\uC744 \uB2EC\uC131\uD558\uAE30 \uC704\uD55C \uAC00\uC7A5 \uC9E7\uC740 subarray\n \n // 1. \uAC01 \uC790\uB9AC\uB9C8\uB2E4 \uAC00\uC9C8 \uC218 \uC788\uB294 max\uAC12\uB4E4\uC744 \uBBF8\uB9AC \uAD6C\uD574\uB193\uB294\uB2E4. \n // \u203B \uC2DC\uC791\uC810\uC774 \uB2E4\uB974\uAE30 \uB54C\uBB38\uC5D0 \uAC00\uC9C8 \uC218 \uC788\uB294 \uCD5C\uB300\uAC12\uC774 \uAC01\uAC01 \uB2E4\uB974\uB2E4. \n\n // 2. sliding windows \uB85C \uAD6C\uD55C\uB2E4. \n // \uD604\uC7AC\uC758 bitmask\uAC12\uC744 max[start] \uC640 \uBE44\uAD50\uD55C\uB2E4. \n // \u203B \uC2DC\uC791\uC810\uC774 start\uC774\uACE0 bitmask\uAC00 max[start]\uB791 \uAC19\uC73C\uBA74 \n // \uD574\uB2F9 \uAE38\uC774\uB97C result[start]\uC5D0 \uC800\uC7A5\n\n // \u203B bit\uC5F0\uC0B0 \uAC12\uC744 sliding window\uD560 \uB54C \uAC01 \uC790\uB9AC bit\uC758 \uAC1C\uC218\uB97C \uC720\uC9C0\uD574\uC8FC\uBA74\uC11C \uACC4\uC0B0\uD574\uC900\uB2E4.\n\n\n int n = nums.length;\n \n int result[] = new int[n];\n\n int max[] = new int[n];\n int m = 0;\n for(int i = n-1; i >= 0; i--) {\n m |= nums[i];\n max[i] = m;\n }\n\n\n int count[] = new int[30];\n int start = 0;\n int bitmask = 0;\n for(int i = 0; i < n; i++) {\n bitmask = add(count, nums[i]);\n\n while( start <= i && bitmask == max[start] ) {\n result[start] = i-start+1;\n bitmask = remove(count, nums[start]);\n start++;\n\n // for(int j = 0; j < result.length; j++) System.out.print(result[j] + ","); System.out.println();\n }\n\n // System.out.println(i + " " +bitmask);\n }\n\n return result;\n }\n\n private int add(int count[], int num) {\n \n int bitmask = 0;\n for(int i = 0; i < 30; i++) {\n if ( (num & ( 1 << i)) > 0 ) count[i]++;\n if (count[i] > 0 ) bitmask |= (1 << i);\n }\n\n return bitmask;\n }\n\n private int remove(int count[], int num) {\n int bitmask = 0;\n for(int i = 0; i < 30; i++) {\n if ( (num & ( 1 << i)) > 0 ) count[i]--;\n if ( count[i] > 0 ) bitmask |= (1 << i);\n }\n\n return bitmask;\n }\n\n}\n```
0
0
['Bit Manipulation', 'Memoization', 'Sliding Window', 'Java']
0
smallest-subarrays-with-maximum-bitwise-or
C++ | 2 approaches | O(n * 32) | O(n * 32 * logn) | simple implementations
c-2-approaches-on-32-on-32-logn-simple-i-qyln
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
shubhamchandra01
NORMAL
2024-04-23T10:28:56.500216+00:00
2024-04-23T10:28:56.500234+00:00
4
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n\nBelow implementation is set + binary search (lower_bound)\n\nTime complexity: **O(n x 32 x logn)**\n\n```\nclass Solution {\npublic:\n vector<int> smallestSubarrays(vector<int>& nums) {\n\t\tint n = nums.size();\n\n\t\tvector<set<int>> idx(32);\n\t\tfor (int i = 0; i < n; i++) {\n\t\t\tfor (int j = 0; j < 32; j++) {\n\t\t\t\tif ((nums[i] >> j) & 1) {\n\t\t\t\t\tidx[j].insert(i);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\t\n\t\tvector<int> res(n);\n\t\tfor (int i = 0; i < n; i++) {\n\t\t\tint mn = i;\n\t\t\tfor (int j = 0; j < 32; j++) {\n\t\t\t\tset<int> &st = idx[j];\n\t\t\t\tauto it = st.lower_bound(i);\n\t\t\t\tif (it == st.end()) {\n\t\t\t\t\tst.clear();\n\t\t\t\t} else {\n\t\t\t\t\tmn = max(mn, *it);\n\t\t\t\t}\n\t\t\t}\n\t\t\tres[i] = mn - i + 1;\n\t\t}\n\t\treturn res;\n }\n};\n\n```\n\nImprovement: \nTime complexity **O(n x 32)**\n\n```\nclass Solution {\npublic:\n vector<int> smallestSubarrays(vector<int>& nums) {\n\t\tint n = nums.size();\n\n\t\tvector<queue<int>> idx(32);\n\t\tfor (int i = 0; i < n; i++) {\n\t\t\tfor (int j = 0; j < 32; j++) {\n\t\t\t\tif ((nums[i] >> j) & 1) {\n\t\t\t\t\tidx[j].push(i);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\t\n\t\tvector<int> res(n);\n\t\tfor (int i = 0; i < n; i++) {\n\t\t\tint mn = i;\n\t\t\tfor (int j = 0; j < 32; j++) {\n\t\t\t\tqueue<int> &q = idx[j];\n\t\t\t\twhile (!q.empty() && q.front() < i) q.pop();\n\t\t\t\tif (!q.empty()) {\n\t\t\t\t\tmn = max(mn, q.front());\n\t\t\t\t} \n\t\t\t}\n\t\t\tres[i] = mn - i + 1;\n\t\t}\n\t\treturn res;\n }\n};\n\n```\n\n\n\n
0
0
['C++']
0
smallest-subarrays-with-maximum-bitwise-or
Python3 solution checking all possible OR values
python3-solution-checking-all-possible-o-7838
Intuition\n Describe your first thoughts on how to solve this problem. \nIdea from problem https://leetcode.com/problems/bitwise-ors-of-subarrays/description/\n
nguyenquocthao00
NORMAL
2024-04-22T09:31:28.935592+00:00
2024-04-22T09:36:47.405531+00:00
43
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nIdea from problem https://leetcode.com/problems/bitwise-ors-of-subarrays/description/\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution:\n def smallestSubarrays(self, nums: List[int]) -> List[int]:\n n=len(nums)\n res=[0]*n\n m=defaultdict(lambda:n+1)\n for i in range(n-1,-1,-1):\n m2=defaultdict(lambda:n+1)\n m2[nums[i]]=1\n for k in m: \n x = k|nums[i]\n m2[x] = min(m2[x], m[k]+1)\n m=m2\n res[i] = m[max(m)]\n return res\n \n```
0
0
['Python3']
0
smallest-subarrays-with-maximum-bitwise-or
Sliding window solution
sliding-window-solution-by-ulyx-q2sh
Intuition\n Describe your first thoughts on how to solve this problem. \nUsing an array to record the apprent times of every bit \ndon\'t know how to use bitmap
ulyx
NORMAL
2024-04-12T16:33:40.504183+00:00
2024-04-12T16:33:40.504209+00:00
3
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nUsing an array to record the apprent times of every bit \ndon\'t know how to use bitmap, so using own code\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\nO(N)\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\nO(N)\n# Code\n```\nclass Solution {\n public int[] smallestSubarrays(int[] nums) {\n \n int len = nums.length;\n int r = 0;\n int b = len - 1;\n int e = len - 1;\n int[] res = new int[len];\n\n int[] count = new int[32];\n\n // b - e\n while (b >= 0) {\n\n r = r | nums[b];\n\n add(count, nums[b]);\n\n while (e > b && contains(count, nums[e])) {\n remove(count, nums[e]);\n e--;\n }\n\n res[b] = e - b + 1;\n\n b--;\n }\n\n return res;\n }\n\n boolean contains(int[] count, int a) {\n\n for (int i = 0; i < 32; i++) {\n if ((a & 1) == 1) {\n if (count[i] <= 1) {\n return false;\n }\n }\n a = a >> 1;\n }\n return true;\n }\n\n void remove(int[] count, int a) {\n for (int i = 0; i < 32; i++) {\n if ((a & 1) == 1) {\n count[i]--;\n }\n a = a >> 1;\n }\n }\n\n void add(int[] count, int a) {\n\n for (int i = 0; i < 32; i++) {\n if ((a & 1) == 1) {\n count[i]++;\n }\n a = a >> 1;\n }\n }\n}\n```
0
0
['Java']
0
smallest-subarrays-with-maximum-bitwise-or
Sliding window solution
sliding-window-solution-by-ulyx-eneh
Intuition\n Describe your first thoughts on how to solve this problem. \nUsing an array to record the apprent times of every bit \ndon\'t know how to use bitmap
ulyx
NORMAL
2024-04-12T16:33:39.445351+00:00
2024-04-12T16:33:39.445383+00:00
8
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nUsing an array to record the apprent times of every bit \ndon\'t know how to use bitmap, so using own code\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\nO(N)\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\nO(N)\n# Code\n```\nclass Solution {\n public int[] smallestSubarrays(int[] nums) {\n \n int len = nums.length;\n int r = 0;\n int b = len - 1;\n int e = len - 1;\n int[] res = new int[len];\n\n int[] count = new int[32];\n\n // b - e\n while (b >= 0) {\n\n r = r | nums[b];\n\n add(count, nums[b]);\n\n while (e > b && contains(count, nums[e])) {\n remove(count, nums[e]);\n e--;\n }\n\n res[b] = e - b + 1;\n\n b--;\n }\n\n return res;\n }\n\n boolean contains(int[] count, int a) {\n\n for (int i = 0; i < 32; i++) {\n if ((a & 1) == 1) {\n if (count[i] <= 1) {\n return false;\n }\n }\n a = a >> 1;\n }\n return true;\n }\n\n void remove(int[] count, int a) {\n for (int i = 0; i < 32; i++) {\n if ((a & 1) == 1) {\n count[i]--;\n }\n a = a >> 1;\n }\n }\n\n void add(int[] count, int a) {\n\n for (int i = 0; i < 32; i++) {\n if ((a & 1) == 1) {\n count[i]++;\n }\n a = a >> 1;\n }\n }\n}\n```
0
0
['Java']
0
smallest-subarrays-with-maximum-bitwise-or
Simple For loop | TC - O(n*32)
simple-for-loop-tc-on32-by-aavvikk-xzp2
Idea - Traverse from right and check for each index i at what min index the the jth bit of nums[i] is set. Take the max of all these indices and subtract from
aavvikk__
NORMAL
2024-03-04T05:36:23.014308+00:00
2024-03-04T05:45:19.874237+00:00
3
false
**Idea** - Traverse from right and check for each index i at what min index the the jth bit of nums[i] is set. Take the max of all these indices and subtract from the curent index to get the answer for nums[i]. store it in a vector and return.\n\n```\nclass Solution {\npublic:\n vector<int> smallestSubarrays(vector<int>& nums) {\n \n vector<int> v;\n vector<int> minIndex(33, 0);\n \n for(int i = nums.size() - 1; i >= 0; --i) {\n \n for(int j = 31; j >= 0; --j) {\n \n // check if the jth bit is set or not\n if(nums[i]&(1<<j)) {\n \n minIndex[j] = i;\n }\n }\n \n int ans = i;\n for(int j = 31; j >= 0; --j) {\n ans = max(ans, minIndex[j]);\n }\n \n v.push_back(ans - i + 1);\n }\n \n reverse(v.begin(), v.end());\n return v;\n }\n};\n```
0
0
['C']
0
smallest-subarrays-with-maximum-bitwise-or
JAVA | Bit-Array | Fastest | EasyToUnderStand | O(N)
java-bit-array-fastest-easytounderstand-xn3nh
Please VoteUp if you find the solution helpful :)\n\n# Intuition\n Describe your first thoughts on how to solve this problem. \nJust need to store the latest or
CodeS-Real
NORMAL
2024-02-25T14:47:37.269767+00:00
2024-02-25T14:47:37.269797+00:00
9
false
Please VoteUp if you find the solution helpful :)\n\n# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nJust need to store the latest or most recent position any of the 32 bits are set for each value. If none are set answer is 1 else the max latest position which can set a bit .\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n O(N)\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n O(N)\n# Code\n```\nclass Solution {\n public int[] smallestSubarrays(int[] nums) {\n int maxBit = 0, maxPos = nums.length;\n int bCntArr[] = new int[32];\n Arrays.fill(bCntArr, -1);\n int res[] = new int[nums.length];\n for(int i = nums.length - 1; i >= 0; i--) {\n int curCnt = getMinPos(nums[i], bCntArr, i);\n if(curCnt == -1)\n res[i] = 1;\n else\n res[i] = curCnt - i + 1;\n } \n return res;\n }\n\n int getMinPos(int n, int arr[], int pos) {\n int res = -1;\n for(int i = 0; i < 32; i++) {\n if((n & (1<<i)) > 0){\n arr[i] = pos;\n }\n res = Math.max(res, arr[i]);\n }\n return res;\n }\n}\n```
0
0
['Array', 'Bit Manipulation', 'Java']
0
smallest-subarrays-with-maximum-bitwise-or
C++ | Bit Solution
c-bit-solution-by-pikachuu-cg1l
Code\n\nclass Solution {\npublic:\n vector<int> smallestSubarrays(vector<int>& nums) {\n int n = nums.size();\n vector<int> ans(n);\n ve
pikachuu
NORMAL
2024-02-22T21:12:06.763157+00:00
2024-02-22T21:12:06.763204+00:00
11
false
# Code\n```\nclass Solution {\npublic:\n vector<int> smallestSubarrays(vector<int>& nums) {\n int n = nums.size();\n vector<int> ans(n);\n vector<int> closestOne(32);\n for(int i = n - 1; i >= 0; i--) {\n for(int j = 0; j <= 31; j++) {\n if(nums[i] & (1 << j))\n closestOne[j] = i;\n }\n ans[i] = max(1, *max_element(closestOne.begin(), closestOne.end()) - i + 1);\n }\n return ans;\n }\n};\n```
0
0
['Bit Manipulation', 'C++']
0
smallest-subarrays-with-maximum-bitwise-or
Simple java solution
simple-java-solution-by-masterdeniro-yv7t
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
masterdeniro
NORMAL
2023-12-10T05:22:31.539054+00:00
2023-12-10T05:22:31.539077+00:00
6
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\n public int[] smallestSubarrays(int[] nums) {\n int[] bitsPositions = new int[32];\n int[] res = new int[nums.length];\n for(int i = nums.length -1;i >=0 ;i--) {\n var min = updateBitsAndGenMin(i, bitsPositions, nums[i]);\n res[i] = min;\n }\n return res; \n }\n private int updateBitsAndGenMin(int i, int[] bitsPositions, int num) {\n int bitPos = 0;\n while(num >0) {\n\n var newPos = num & 1;\n if (newPos == 1 ) {\n bitsPositions[bitPos] = i;\n\n }\n num = num >> 1; \n bitPos++;\n }\n\n int max = 0;\n for(int k =0; k < bitsPositions.length; k++) {\n if (bitsPositions[k] > 0) {\n max = Math.max(bitsPositions[k], max);\n }\n }\n\n return max == 0 ? 1 : max - i + 1;\n }\n}\n```
0
0
['Java']
0
smallest-subarrays-with-maximum-bitwise-or
[Java] Bit Solution with Explanation 🔥
java-bit-solution-with-explanation-by-sa-k37p
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
sahil_ansari98
NORMAL
2023-12-09T21:03:29.061297+00:00
2023-12-09T21:03:29.061328+00:00
5
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\n public int[] smallestSubarrays(int[] nums) {\n int n = nums.length, last[] = new int[30], res[] = new int[n];\n for (int i = n - 1; i >= 0; --i) {\n res[i] = 1;\n for (int j = 0; j < 30; ++j) {\n if ((nums[i] & (1 << j)) > 0)\n last[j] = i;\n res[i] = Math.max(res[i], last[j] - i + 1);\n }\n }\n return res;\n }\n}\n```
0
0
['Java']
0
smallest-subarrays-with-maximum-bitwise-or
bitmap mapping
bitmap-mapping-by-sisoj-35z0
Intuition\nWe have a set of bits that exists for the array, lets say we have \n1\n2\n4\n8\n16\netc. We are interested in the index where all these bits will be
sisoj
NORMAL
2023-11-01T20:59:29.781674+00:00
2023-11-01T20:59:29.781701+00:00
1
false
# Intuition\nWe have a set of bits that exists for the array, lets say we have \n1\n2\n4\n8\n16\netc. We are interested in the index where all these bits will be turned on the soonest. For this we will be tracking the list of indexes for each of the bits and the one that is maximum of the minimums will be the start position. Code might be easier to understand than the explanation.\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n- O(N) * sizeof<INT>\n\n- Space complexity:\n- O(N) * sizeof<INT>\n\n# Code\n```\nclass Solution {\npublic:\n vector<int> smallestSubarrays(vector<int>& nums) {\n int n = (int)nums.size();\n vector<vector<int>> bits(32);\n vector<int> indexes(32, -1);\n\n for (int i = 0; i<n; ++i) {\n for (int j = 0; j<31; j++) {\n if ((nums[i]>>j) & 1) {\n indexes[j] = 0;\n bits[j].push_back(i);\n }\n }\n }\n int last = 0;\n for (int i = 0; i<31; ++i) {\n if (!bits[i].size()) continue;\n if (bits[i][0] > last)\n last = bits[i][0];\n }\n vector<int> ans;\n for (int i = 0; i<n; ++i) {\n ans.push_back(max(1,last -i +1));\n for (int j =0; j<31; ++j) {\n if ((nums[i]>>j) & 1) {\n indexes[j]++;\n if (indexes[j] < (int)bits[j].size())\n last = max(last, bits[j][indexes[j]]);\n }\n }\n }\n\n return ans;\n\n\n\n \n \n \n }\n};\n```
0
0
['C++']
0
smallest-subarrays-with-maximum-bitwise-or
python bit + hashmap + reverse traversal O(N*log(max(nums))) tc
python-bit-hashmap-reverse-traversal-onl-mt9w
a much more challenging problem than I expected, you need to spot some tricks.\n1. traverse in reversal\n2. the maximum_or must be or the whole array, hence, th
Pseudo_intelligent
NORMAL
2023-09-24T23:41:56.638657+00:00
2023-09-24T23:41:56.638674+00:00
2
false
a much more challenging problem than I expected, you need to spot some tricks.\n1. traverse in reversal\n2. the maximum_or must be or the whole array, hence, the right subarray max or must be \nthe \'suffing accumulative or\'\n3. hashmap goes into comparing current nums with current maximum suffix or. If cur num bit is 0 and cur or is 1 in this digit, mean we want to find a number with 1 at that digit to or with it. We use a hashmap to store the last index we encounter in that bit digit. Of all cases, we know the maximum last index we include all 1 digits we need.\n```\nclass Solution:\n def smallestSubarrays(self, nums: List[int]) -> List[int]:\n run_or = 0\n dp = []\n hashmap = {}\n for i in range(len(nums)-1,-1,-1):\n run_or |= nums[i]\n temp = 1\n minimax = i\n counts = 0\n while temp <= run_or:\n if nums[i] & temp:\n hashmap[counts] = i\n if run_or&temp and nums[i]&temp == 0:\n minimax = max(minimax,hashmap[counts])\n counts += 1\n temp <<=1\n dp.append(minimax-i+1)\n return dp[::-1]
0
0
[]
0
smallest-subarrays-with-maximum-bitwise-or
C++/Python, solution with explanation
cpython-solution-with-explanation-by-shu-drmp
Traverse nums reversely,\nuse an array to record which index is the latest 1 bit appears in 32 bits.\nAnd find furthest index of 1 bit, the length of subarray i
shun6096tw
NORMAL
2023-09-04T08:38:26.995816+00:00
2023-09-04T08:38:26.995847+00:00
3
false
Traverse nums reversely,\nuse an array to record which index is the latest 1 bit appears in 32 bits.\nAnd find furthest index of 1 bit, the length of subarray is furthest index - i + 1.\n![image](https://assets.leetcode.com/users/images/6545636b-145c-47fd-a46d-ec6493794a2b_1693816614.9771085.png)\n\ntc isO(32n), sc is O(32).\n\n### python\n```python\nclass Solution:\n def smallestSubarrays(self, nums: List[int]) -> List[int]:\n cloest = [-1] * 32\n ans = [0] * len(nums)\n for i in range(len(nums)-1,-1,-1):\n furthest = i\n for j in range(32):\n if nums[i] >> j & 1:\n cloest[j] = i\n if cloest[j] > furthest: furthest = cloest[j]\n ans[i] = furthest - i + 1\n return ans\n```\n\n### c++\n```cpp\nclass Solution {\npublic:\n vector<int> smallestSubarrays(vector<int>& nums) {\n int closest [32] {0};\n vector<int> ans (nums.size());\n for (int i = nums.size() - 1, furthest; i >= 0; i-=1) {\n furthest = i;\n for (int j = 0; j < 32; j+=1) {\n if (nums[i] >> j & 1)\n closest[j] = i;\n if (closest[j] > furthest) furthest = closest[j];\n }\n ans[i] = furthest - i + 1;\n }\n return ans;\n }\n};\n```
0
0
['C', 'Python']
0
smallest-subarrays-with-maximum-bitwise-or
C++ || Operation on each bit
c-operation-on-each-bit-by-gaurav_new-ebps
\n\n# Code\n\nclass Solution {\npublic:\n vector<int> smallestSubarrays(vector<int>& nums) {\n int orr=0;\n int n=nums.size();\n vector<
gaurav_new
NORMAL
2023-08-29T17:53:17.677784+00:00
2023-08-29T17:53:17.677803+00:00
33
false
\n\n# Code\n```\nclass Solution {\npublic:\n vector<int> smallestSubarrays(vector<int>& nums) {\n int orr=0;\n int n=nums.size();\n vector<int>val(n,0);\n for(int i=n-1;i>=0;i--)\n {\n orr=orr|nums[i];\n val[i]=orr;\n }\n vector<int>ans;\n map<int,set<int>>bits;\n for(int i=0;i<n;i++)\n { \n \n for(int j=0;j<32;j++)\n { \n \n if(((nums[i])&(1<<j)))\n { \n bits[j].insert(i);\n }\n }\n }\n \n for(int i=0;i<nums.size();i++)\n {\n int maxxbit=val[i];\n int len=-1e9;\n for(int j=0;j<32;j++)\n {\n if((maxxbit&(1<<j)))\n {\n auto it=bits[j].lower_bound(i);\n int idx=*it;\n len=max(len,idx-i+1);\n }\n }\n if(len==-1e9) ans.push_back(1);\n else\n ans.push_back(len); \n }\n return ans;\n }\n};\n```
0
0
['Binary Search', 'Bit Manipulation', 'C++']
0
smallest-subarrays-with-maximum-bitwise-or
bits
bits-by-shiva_rudra123-auij
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
shiva_rudra123
NORMAL
2023-08-12T04:43:30.801731+00:00
2023-08-12T04:43:30.801752+00:00
2
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\npublic:\n vector<int> smallestSubarrays(vector<int>& arr) {\n int n=arr.size();\n vector<vector<int>>suffix(n);\n vector<int>suff(32,n);\n int sum=0;\n \n for(int i=n-1;i>=0;i--){\n for(int j=0;j<32;j++){\n if(arr[i]&(1<<j)){\n suff[j]=i;\n }\n }\n suffix[i]=suff;\n sum |=arr[i];\n }\n vector<int>ans;\n for(int i=0;i<n;i++){\n int right=i;\n for(int j=0;j<32;j++){\n if(suffix[i][j]!=n){\n right=max(right,suffix[i][j]);\n }\n }\n cout<<right<<endl;\n ans.push_back(right-i+1);\n }\n //cout<<endl;\n return ans;\n\n\n }\n};\n```
0
0
['C++']
0
smallest-subarrays-with-maximum-bitwise-or
C++ , Easy and precise , Sliding Window solution with BIT_COUNT,
c-easy-and-precise-sliding-window-soluti-f9vl
Intuition\n. \n\n\n# Approach\n Describe your approach to solving the problem. \n\nCreate a bit_vec (Vector) that stores tha count of bits that found till now\n
pranaynagpure
NORMAL
2023-07-08T15:46:13.764612+00:00
2023-07-08T15:46:13.764649+00:00
15
false
# Intuition\n<!--. -->\n\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\nCreate a bit_vec (Vector) that stores tha count of bits that found till now\n\nExample\n\nn= [1,1,2,2,3,3] max_or = 3\n i=0,j=0;\n\nbit_vec[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0......32 times }\n\nnext\nn = [1,1,2,2,3,3] \n i=0, j =2 at this position we found or = 3 so increment i\n\nbit_vec[] = { 2 ,1, 0 ,0 ,0 ,0 ,0 .... 32 times}\n\nn = [1,1,2,2,3,3]\nres [3,0,0,0,0,0]\n i=1, j=2 still the or is => \'3\' so increment the i\nbit_vec[]= { 1,1,0,0,0,0,.... 32 times};\n\nnotice how bit_vec[0] changes from 2-1 becuse , as the i incremented we need to decrement the count of bits from the bit_vec;\n\nand if j reached the end bit i has not the recursively call the same fucntion\n\nPlease upvote the solution if you found helpful it helps me keep motivated\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\nO(32*N) not sure (please suggest as not sure about how many time reursion can go)\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\nO(N) => for result vector\n\n# Code\n```\nclass Solution {\npublic:\n\n int getOR(vector<int> &bit_vec) // to convet the bit_vec into number example bit_vec[] = {2,3,4, 0 ,0,0,} => 7 as first 3 bits are set\n {\n int ans =0;\n for(int i =0 ; i<32 ; i++)\n if(bit_vec[i] >0)\n ans = ans | (1<<i); \n return ans;\n }\n vector<int> smallestSubarrays(vector<int>& nums) {\n \n vector<int> bit_vec(32,0);\n vector<int> res((int)nums.size(), 1);\n\n int OR =0;\n\n for(int &i : nums)\n OR = OR |i;\n\n int j =0 , i =0;\n\n for(j =0 ;j< nums.size(); ++j)\n {\n int a = nums[j];\n int k =0;\n while(a) // add bit count of current numebr to vector\n {\n if(a & 1)\n bit_vec[k]++;\n a >>=1;\n ++k;\n }\n\n while(i <=j and getOR(bit_vec) >= OR) // increment i uthil there is maximum or\n {\n res[i] = j-i+1;\n \n a= nums[i]; k=0;\n while(a) // remove the bit count from vector\n {\n if(a & 1)\n bit_vec[k]--;\n a >>=1;\n ++k;\n }\n i++;\n }\n }\n if(i< nums.size()) // if i is still less than nums size then recursively call the function \n {\n vector<int> t(nums.begin()+i,nums.end());\n auto v = smallestSubarrays( t);\n\n for(int k = i ;k< nums.size() ; k++)\n res[k] =v[k-i];\n }\n\n return res;\n }\n};\n```
0
0
['C++']
0
smallest-subarrays-with-maximum-bitwise-or
C++ , Easy and precise , Sliding Window solution with BIT_COUNT,
c-easy-and-precise-sliding-window-soluti-5yz4
Intuition\n. \n\n\n# Approach\n Describe your approach to solving the problem. \n\nCreate a bit_vec (Vector) that stores tha count of bits that found till now\n
pranaynagpure
NORMAL
2023-07-08T15:46:11.419632+00:00
2023-07-08T15:46:11.419664+00:00
12
false
# Intuition\n<!--. -->\n\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\nCreate a bit_vec (Vector) that stores tha count of bits that found till now\n\nExample\n\nn= [1,1,2,2,3,3] max_or = 3\n i=0,j=0;\n\nbit_vec[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0......32 times }\n\nnext\nn = [1,1,2,2,3,3] \n i=0, j =2 at this position we found or = 3 so increment i\n\nbit_vec[] = { 2 ,1, 0 ,0 ,0 ,0 ,0 .... 32 times}\n\nn = [1,1,2,2,3,3]\nres [3,0,0,0,0,0]\n i=1, j=2 still the or is => \'3\' so increment the i\nbit_vec[]= { 1,1,0,0,0,0,.... 32 times};\n\nnotice how bit_vec[0] changes from 2-1 becuse , as the i incremented we need to decrement the count of bits from the bit_vec;\n\nand if j reached the end bit i has not the recursively call the same fucntion\n\nPlease upvote the solution if you found helpful it helps me keep motivated\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\nO(32*N) not sure (please suggest as not sure about how many time reursion can go)\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\nO(N) => for result vector\n\n# Code\n```\nclass Solution {\npublic:\n\n int getOR(vector<int> &bit_vec) // to convet the bit_vec into number example bit_vec[] = {2,3,4, 0 ,0,0,} => 7 as first 3 bits are set\n {\n int ans =0;\n for(int i =0 ; i<32 ; i++)\n if(bit_vec[i] >0)\n ans = ans | (1<<i); \n return ans;\n }\n vector<int> smallestSubarrays(vector<int>& nums) {\n \n vector<int> bit_vec(32,0);\n vector<int> res((int)nums.size(), 1);\n\n int OR =0;\n\n for(int &i : nums)\n OR = OR |i;\n\n int j =0 , i =0;\n\n for(j =0 ;j< nums.size(); ++j)\n {\n int a = nums[j];\n int k =0;\n while(a) // add bit count of current numebr to vector\n {\n if(a & 1)\n bit_vec[k]++;\n a >>=1;\n ++k;\n }\n\n while(i <=j and getOR(bit_vec) >= OR) // increment i uthil there is maximum or\n {\n res[i] = j-i+1;\n \n a= nums[i]; k=0;\n while(a) // remove the bit count from vector\n {\n if(a & 1)\n bit_vec[k]--;\n a >>=1;\n ++k;\n }\n i++;\n }\n }\n if(i< nums.size()) // if i is still less than nums size then recursively call the function \n {\n vector<int> t(nums.begin()+i,nums.end());\n auto v = smallestSubarrays( t);\n\n for(int k = i ;k< nums.size() ; k++)\n res[k] =v[k-i];\n }\n\n return res;\n }\n};\n```
0
0
['C++']
0
smallest-subarrays-with-maximum-bitwise-or
Dynamic programming approach with Python
dynamic-programming-approach-with-python-l40q
Intuition\n> We can iterate through nums in reverse order to find the maximum OR reachable from each index. After this we will iterate through nums from each in
FransV
NORMAL
2023-06-28T08:21:09.117612+00:00
2023-06-28T08:21:09.117645+00:00
77
false
# Intuition\n> We can iterate through nums in reverse order to find the maximum OR reachable from each index. After this we will iterate through nums from each index until we will reach the target OR. We will use dynamic programming to improve time efficiency.\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nimport sys\n\nclass Solution:\n def smallestSubarrays(self, nums: List[int]) -> List[int]:\n\n def helper(i, item, target):\n\n #Dynamic programming\n if (i, item, target) in dp:\n return dp[i, item, target]\n \n #Has target been reached in the current index\n temp = item | nums[i]\n if temp == target:\n dp[i, item, target] = 1\n #Recursion call\n else:\n dp[i, item, target] = helper(i+1, temp, target) + 1\n\n return dp[i, item, target]\n\n #Increase recursion limit\n sys.setrecursionlimit(10**6)\n n = len(nums)\n\n #Find the maximum or reachable from each index\n item = 0\n max_or = []\n for i in range(n):\n item |= nums[-i-1]\n max_or.append(item) \n max_or.reverse()\n\n #Iterate through the array\n dp = {}\n output = []\n for i in range(n):\n output.append(helper(i, 0, max_or[i]))\n\n return output\n```
0
0
['Dynamic Programming', 'Bit Manipulation', 'Python3']
0
smallest-subarrays-with-maximum-bitwise-or
very simple and Easy Solution using segment Tree+Two pointer+Prefix OR
very-simple-and-easy-solution-using-segm-1cuw
Intuition\nFirst find the maximum value for each subarray using reverse prefix or\nthen start from the right hand side and try to reduce the boundary \nsee the
51_KING
NORMAL
2023-06-21T06:10:59.263951+00:00
2023-06-21T06:10:59.263978+00:00
22
false
# Intuition\nFirst find the maximum value for each subarray using reverse prefix or\nthen start from the right hand side and try to reduce the boundary \nsee the solution you will easily understand.\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\nO(NlogN)\n\n- Space complexity:\nO(N)\n\n# Code\n```\n\nclass SegmentTree{\n vector <int> seg;\n public:\n SegmentTree(int n)\n {\n seg.resize(4*n,0);\n }\n void build(int node,int l,int r,vector <int> &nums)\n {\n if(l==r)\n {\n seg[node] = nums[l];\n return;\n }\n int mid = (l+r)>>1;\n build(2*node+1,l,mid,nums);\n build(2*node+2,mid+1,r,nums);\n \n seg[node] = seg[2*node+1]|seg[2*node+2];\n }\n \n int query(int node,int left,int right,int l,int r)\n {\n if(l>r||r<left||right<l) return 0;\n if(l>=left&&r<=right) return seg[node];\n \n int mid = (l+r)>>1;\n return query(2*node+1,left,right,l,mid) | query(2*node+2,left,right,mid+1,r);\n }\n};\nclass Solution {\npublic:\n vector<int> smallestSubarrays(vector<int>& nums) {\n int n = nums.size();\n SegmentTree segmentTree(n);\n segmentTree.build(0,0,n-1,nums);\n vector <int> maxOR(n);\n maxOR[n-1] = nums[n-1];\n for(int i=n-2;i>=0;i--)\n {\n maxOR[i] = maxOR[i+1] | nums[i];\n }\n int i=n-2,j=n-1;\n vector <int> ans(n);\n ans[n-1] = 1;\n \n while(i>=0)\n {\n while(i<j&&segmentTree.query(0,i,j-1,0,n-1)>=maxOR[i])\n j--;\n ans[i] = j-i+1;\n i--;\n }\n return ans;\n }\n};\n```
0
0
['Two Pointers', 'Segment Tree', 'Prefix Sum', 'C++']
0
smallest-subarrays-with-maximum-bitwise-or
✅Simple solution using Binary Search
simple-solution-using-binary-search-by-r-cffv
\nclass Solution {\npublic:\n vector<int> smallestSubarrays(vector<int>& nums) {\n int n=nums.size();\n \n vector<vector<int>> list(n, v
realmmasterx
NORMAL
2023-05-27T15:15:10.167902+00:00
2023-05-27T15:15:10.167944+00:00
41
false
```\nclass Solution {\npublic:\n vector<int> smallestSubarrays(vector<int>& nums) {\n int n=nums.size();\n \n vector<vector<int>> list(n, vector<int>(30));\n for(int i=0;i<n;i++) {\n int temp = nums[i];\n for(int j=0;j<30;j++) {\n list[i][j]=temp%2;\n temp/=2;\n }\n }\n \n vector<vector<int>> prefix(n, vector<int>(30)), for_bi(30, vector<int>(n));\n prefix[0] = list[0];\n for(int i=1;i<n;i++) {\n for(int j=0;j<30;j++) {\n prefix[i][j]=prefix[i-1][j]+list[i][j];\n for_bi[j][i]=prefix[i][j];\n }\n }\n \n vector<int> compare(30);\n compare = prefix[n-1];\n \n vector<int> ans(n);\n ans[n-1] = 1;\n \n for(int i=0;i<n-1;i++) {\n int temp = 1;\n for(int j=0;j<30;j++) {\n if(prefix[i][j]<compare[j] && list[i][j]==0) {\n vector<int>::iterator fk=lower_bound(for_bi[j].begin()+i,for_bi[j].end(),prefix[i][j]+1);\n int x = (fk - (for_bi[j].begin()+i));\n temp = max(temp, x + 1);\n }\n }\n ans[i]=temp;\n }\n return ans;\n }\n};\n```
0
0
['Binary Search', 'C++']
0
smallest-subarrays-with-maximum-bitwise-or
[Python] find the largest distance for each bit of the maximum OR value
python-find-the-largest-distance-for-eac-mbuz
\nclass Solution:\n def smallestSubarrays(self, nums: List[int]) -> List[int]:\n # two sweeps\n len_n = len(nums)\n # sweep 1: find the
wangw1025
NORMAL
2023-04-07T05:59:42.797887+00:00
2023-04-07T05:59:42.797939+00:00
75
false
```\nclass Solution:\n def smallestSubarrays(self, nums: List[int]) -> List[int]:\n # two sweeps\n len_n = len(nums)\n # sweep 1: find the maximum OR value at each index\n max_or = [0] * len_n\n idx, c_or = len_n - 1, 0\n while idx >= 0:\n c_or |= nums[idx]\n max_or[idx] = c_or\n idx -= 1\n \n # sweep 2: starting from the last number, track the closest index for every bit\n ans = [1] * len_n\n bidx = [None] * 32\n idx = len_n - 1\n while idx >= 0:\n i = 0\n n = nums[idx]\n while n:\n if n & 1:\n bidx[i] = idx\n i += 1\n n >>= 1\n mor = max_or[idx]\n max_dist, i = 1, 0\n while mor:\n if mor & 1:\n max_dist = max(max_dist, bidx[i] - idx + 1)\n i += 1\n mor >>= 1\n ans[idx] = max_dist\n idx -= 1\n \n return ans\n```
0
0
['Python3']
0
maximum-distance-between-a-pair-of-values
O(n) 2 pointers
on-2-pointers-by-votrubac-85rc
Since our arrays are sorted, we can advance i while n1[i] is bigger than n2[j], and increment j otherwise.\n\nJava\njava\npublic int maxDistance(int[] n1, int[]
votrubac
NORMAL
2021-05-09T04:06:18.434244+00:00
2021-05-10T22:45:22.562993+00:00
9,085
false
Since our arrays are sorted, we can advance `i` while `n1[i]` is bigger than `n2[j]`, and increment `j` otherwise.\n\n**Java**\n```java\npublic int maxDistance(int[] n1, int[] n2) {\n int i = 0, j = 0, res = 0;\n while (i < n1.length && j < n2.length)\n if (n1[i] > n2[j])\n ++i;\n else\n res = Math.max(res, j++ - i);\n return res;\n}\n```\n**C++**\n```cpp\nint maxDistance(vector<int>& n1, vector<int>& n2) {\n int i = 0, j = 0, res = 0;\n while (i < n1.size() && j < n2.size())\n if (n1[i] > n2[j])\n ++i;\n else\n res = max(res, j++ - i);\n return res;\n}\n```\n**Python 3**\n```python\nclass Solution:\n def maxDistance(self, n1: List[int], n2: List[int]) -> int:\n i = j = res = 0\n while i < len(n1) and j < len(n2):\n if n1[i] > n2[j]:\n i += 1\n else:\n res = max(res, j - i)\n j += 1\n return res\n```
149
5
['C', 'Python', 'Java']
19
maximum-distance-between-a-pair-of-values
[Java/C++/Python] 2 Pointers, 3 Solutions
javacpython-2-pointers-3-solutions-by-le-vixv
Solution 1\nIterate on input array B\n\nTime O(n + m)\nSpace O(1)\n\nJava\njava\n public int maxDistance(int[] A, int[] B) {\n int res = 0, i = 0, n =
lee215
NORMAL
2021-05-09T04:09:48.597630+00:00
2021-05-09T04:18:34.214672+00:00
6,149
false
# Solution 1\nIterate on input array `B`\n\nTime `O(n + m)`\nSpace `O(1)`\n\n**Java**\n```java\n public int maxDistance(int[] A, int[] B) {\n int res = 0, i = 0, n = A.length, m = B.length;\n for (int j = 0; j < m; ++j) {\n while (i < n && A[i] > B[j])\n i++;\n if (i == n) break;\n res = Math.max(res, j - i);\n }\n return res;\n }\n```\n\n**C++**\n```cpp\n int maxDistance(vector<int>& A, vector<int>& B) {\n int res = 0, i = 0, n = A.size(), m = B.size();\n for (int j = 0; j < m; ++j) {\n while (i < n && A[i] > B[j])\n i++;\n if (i == n) break;\n res = max(res, j - i);\n }\n return res;\n }\n```\n\n**Python**\n```py\n def maxDistance(self, A, B):\n res = i = 0\n for j, b in enumerate(B):\n while i < len(A) and A[i] > b:\n i += 1\n if i == len(A): break\n res = max(res, j - i)\n return res\n```\n<br>\n\n# Solution 2\nIterate on input array `A`\n\nTime `O(n + m)`\nSpace `O(1)`\n\n**Java**\n```java\n public int maxDistance(int[] A, int[] B) {\n int res = 0, j = -1, n = A.length, m = B.length;\n for (int i = 0; i < n; ++i) {\n while (j + 1 < m && A[i] <= B[j + 1])\n j++;\n res = Math.max(res, j - i);\n }\n return res;\n }\n```\n**C++**\n```cpp\n int maxDistance(vector<int>& A, vector<int>& B) {\n int res = 0, j = -1, n = A.size(), m = B.size();\n for (int i = 0; i < n; ++i) {\n while (j + 1 < m && A[i] <= B[j + 1])\n j++;\n res = max(res, j - i);\n }\n return res;\n }\n```\n**Python**\n```py\n def maxDistance(self, A, B):\n res, j = 0, -1\n for i, a in enumerate(A):\n while j + 1 < len(B) and a <= B[j + 1]:\n j += 1\n res = max(res, j - i)\n return res\n```\n\n# Solution 3\nIterate on input array `A` and `B`\n\nTime `O(n + m)`\nSpace `O(1)`\n\n**Java**\n```java\n public int maxDistance(int[] A, int[] B) {\n int i = 0, j = 0, res = 0, n = A.length, m = B.length;\n while (i < n && j < m) {\n if (A[i] > B[j])\n i++;\n else\n res = Math.max(res, j++ - i);\n }\n return res;\n }\n```\n**C++**\n```cpp\n int maxDistance(vector<int>& A, vector<int>& B) {\n int i = 0, j = 0, res = 0, n = A.size(), m = B.size();\n while (i < n && j < m) {\n if (A[i] > B[j])\n i++;\n else\n res = max(res, j++ - i);\n }\n return res;\n }\n```
85
7
[]
15
maximum-distance-between-a-pair-of-values
7 Line c++ | Binary Search | STL
7-line-c-binary-search-stl-by-its_gupta_-ldyi
For any element nums1[i], we essentially need to find the farthest element nums2[j] with j>=i such that the nums2[j] element is not less than nums1[i].\n\nA bru
its_gupta_ananya
NORMAL
2021-05-09T07:08:03.218025+00:00
2021-05-09T07:29:25.397487+00:00
3,164
false
For any element nums1[i], we essentially need to find the farthest element nums2[j] with j>=i such that the nums2[j] element is not less than nums1[i].\n\nA brute force way of doing the same would be to iterate over every j in the range ```i <=j && j <n" ``` , but then we aren\'t using the fact that the two arrays are sorted in non-decreasing order. \n\nSo, what we instead do is, reverse the second array to make it non-increasing and then for every nums1[i], we find the first element which is either equal to or greater than it i.e. Lower_bound of the element (Note that for the original array this would be the same element which would be farther away satisfying the condition). \n\nIn the given code, j represents the index from the end (which would be it\'s index in the original array)\n``` \nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n \n reverse(nums2.begin(),nums2.end());\n int ans = 0;\n for(int i=0;i<nums1.size();++i){\n auto it = lower_bound(nums2.begin(),nums2.end(),nums1[i]) - nums2.begin(); //Finds first element greater than or equal to nums1[i]\n int j = nums2.size() - 1 - it; //Index of the found element in the original array\n if(i<=j) ans = max(ans,j-i); //Update distance \n }\n return ans;\n \n }\n};\n```\n\n\nHope this helps!\nStay Safe.
36
4
['C', 'Binary Tree']
8
maximum-distance-between-a-pair-of-values
[C++] 2 pointers solution
c-2-pointers-solution-by-pankajgupta20-mjfp
\tclass Solution {\n\tpublic:\n\t\tint maxDistance(vector& nums1, vector& nums2) {\n\t\t\tint ans = 0;\n\t\t\tint i = 0;\n\t\t\tint j = 0;\n\t\t\twhile(i < nums
pankajgupta20
NORMAL
2021-05-09T05:21:45.800252+00:00
2021-05-09T05:21:45.800282+00:00
1,447
false
\tclass Solution {\n\tpublic:\n\t\tint maxDistance(vector<int>& nums1, vector<int>& nums2) {\n\t\t\tint ans = 0;\n\t\t\tint i = 0;\n\t\t\tint j = 0;\n\t\t\twhile(i < nums1.size() and j < nums2.size()){\n\t\t\t\tif(nums1[i] <= nums2[j]){\n\t\t\t\t\tif(i <= j){\n\t\t\t\t\t\tans = max(ans, j - i);\n\t\t\t\t\t}\n\t\t\t\t\tj++;\n\t\t\t\t}\n\t\t\t\telse{\n\t\t\t\t\ti++;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn ans;\n\t\t}\n\t};
19
0
['Two Pointers', 'C', 'C++']
3
maximum-distance-between-a-pair-of-values
Java Binary search
java-binary-search-by-zoey02-3svn
\nclass Solution {\n public int maxDistance(int[] nums1, int[] nums2) {\n int max = 0;\n for (int i = 0; i < nums1.length; i++) {\n
zoey02
NORMAL
2021-05-09T04:06:07.666366+00:00
2021-05-09T04:11:29.851898+00:00
1,417
false
```\nclass Solution {\n public int maxDistance(int[] nums1, int[] nums2) {\n int max = 0;\n for (int i = 0; i < nums1.length; i++) {\n int r = nums2.length - 1;\n int l = i;\n int m = i;\n while (l <= r) {\n m = l + (r - l) / 2;\n if (nums1[i] > nums2[m]) {\n r = m - 1;\n } else if (nums1[i] == nums2[m]) {\n l = m + 1;\n } else {\n l = m + 1;\n }\n }\n if (r < 0) {\n continue;\n }\n max = Math.max(max, r - i);\n }\n return max;\n }\n}\n```
15
1
['Binary Tree', 'Java']
3
maximum-distance-between-a-pair-of-values
O ( N ) || O ( N LOG N) || Both Approaches
o-n-o-n-log-n-both-approaches-by-karan_8-o38l
O ( N LOG N ) \n BINARY SEARCH in C++\n\n\nclass Solution {\npublic:\nint maxDistance(vector<int>& n1, vector<int>& n2) {\n\n int ans=0,k=min(n1.size(),n2.si
karan_8082
NORMAL
2022-05-28T05:49:40.848778+00:00
2022-05-28T05:49:40.848815+00:00
1,028
false
**O ( N LOG N ) \n BINARY SEARCH in C++**\n\n```\nclass Solution {\npublic:\nint maxDistance(vector<int>& n1, vector<int>& n2) {\n\n int ans=0,k=min(n1.size(),n2.size());\n for(int i=0; i<k;i++){\n int l=i,r=n2.size()-1,m;\n while(l<=r){\n m=l+(r-l)/2;\n int t= n1[i];\n if(n2[m]>=t){\n l=m+1;\n if(m-i>ans)ans=m-i;\n } \n else r=m-1;\n } \n }\n return ans;\n }\n};\n```\n\n\n**O ( N ) in PYTHON**\n```\nclass Solution:\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n i=0\n j=0\n k=0\n while j<len(nums2):\n while i<len(nums1) and nums1[i]>nums2[j]:\n i+=1\n if (i<len(nums1)):\n k=max(k,j-i)\n j+=1\n if i==len(nums1):\n break\n return k\n```\n\n**O ( N ) in C++**\n```\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int i=0;\n int j=0;\n int k=0;\n while (j<nums2.size()){\n while (i<nums1.size() && nums1[i]>nums2[j]){\n i++;\n }\n k = max(k,j-i);\n j++;\n if (i>=nums1.size()){\n break;\n }\n }\n return k;\n }\n};\n```\n![image](https://assets.leetcode.com/users/images/789f0317-0f2d-42da-9bb8-ac6a99c86144_1653716978.201911.jpeg)\n
13
0
['Two Pointers', 'C', 'Binary Tree', 'Python', 'C++']
2
maximum-distance-between-a-pair-of-values
Easy C++| Detailed Explanation | 2 Pointers
easy-c-detailed-explanation-2-pointers-b-2m32
Problem Definition with Constraints :\n\nBoth the arrays are Non-Increasing.\nWe need to define a solution to find the Maximum distance j-i while maintaining t
saivenky031996
NORMAL
2021-05-17T05:20:28.401284+00:00
2021-05-18T14:30:34.616445+00:00
534
false
**Problem Definition with Constraints** :\n\nBoth the arrays are **Non-Increasing**.\nWe need to define a solution to find the **Maximum** distance `j-i` while maintaining the below 2 constraints.\n* i <= j\n* nums1[i] <= nums2[j]\n\n\n**Solution with Example** :\n \n```\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int i=0, j=0;\n int dis=0;\n while(true) {\n \n\t\t// No more elements are left to process.\n if(i==nums1.size()||j==nums2.size()) break;\n \n\t\t// If the condition is not, then increment both.\n if(nums2[j]<nums1[i] ) {\n i++; \n j++;\n } else {\n\t\t // Calculate the current distance and try incrementing j to maximise the distance. \n dis = max(dis, j++ - i);\n }\n \n }\n return dis;\n }\n};\n```\n\n Consider the following 2 arrays.\n\n```\n[70,60,50,40,30,20,10]\n[80,77,74,71,68,65,62]\n```\n\n1. `i=0, j=0`\n`80>70, dist is j-i = 0, max = 0`\nTry incrementing j to maximise the distance. \n\n2. `i=0, j=1`\n`77>70, dist is j-i = 1, max = 1`\nTry incrementing j to maximise the distance. \n\n3. ` i=0, j=2`\n`74>70, dist is j-i = 2, max = 2`\nTry incrementing j to maximise the distance. \n\n4. `i=0, j=3`\n`71>70, dist is j-i = 3, max = 3`\nTry incrementing j to maximise the distance. \n\n5. `i=0, j=4`\n`68<70, max = 3`\nIncrement i and j. \n**Why j ? Cause we are trying to maintain this maximum. Incrementing i alone will anyways decrease the maximum only (4-1 < 5-1) .**\n\n6. `i=1, j=5`\n `60<65, dist is j-i = 4, max = 4`\nTry incrementing j to maximise the distance. \n7. ` i=1, j=6`\n`60<62, dist is j-i = 5, max = 5`\n\nReturn the maximum value of `5`.\n\n**Complexity**:\n\nTime: `O(maximum(nums1.size() , nums2.size())) `\nSpace: `O(1)`\nPl upvote if this was useful :).
11
0
['Two Pointers', 'C']
0
maximum-distance-between-a-pair-of-values
python binary search
python-binary-search-by-psean21c-akdk
Intuition\n\n\n1) nums1 = [30,29,19,5], nums2 = [25,25,25,25,25]\n2) convert to negative values\nnums1 = [-30,-29,-19,-5]\nnums2 = [-25,-25,-25,-25,-25]\n3) ite
psean21c
NORMAL
2021-05-09T04:23:18.785231+00:00
2021-05-09T04:55:51.115669+00:00
842
false
Intuition\n\n\n1) nums1 = [30,29,19,5], nums2 = [25,25,25,25,25]\n2) convert to negative values\nnums1 = [-30,-29,-19,-5]\nnums2 = [-25,-25,-25,-25,-25]\n3) iterate nums1 and compare each element with nums2\ni = 0: num1[0]= -30 => j = 0 because -30 is smaller than all nums2\ni = 1: num1[1]=-29 => j = 0 because -29 is smaller than all nums2\ni = 2: num1[2]=-19 => j = 5 because -19 is greater than all nums2\ni = 3 num1[3]=-5 => j = 5 because -5 is greater than all nums2\n\n\n```\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n\n nums2 = [-1 * i for i in nums2]\n\n best = 0\n for i, n in enumerate(nums1):\n j = bisect.bisect_right(nums2, -n)\n if j >= i:\n best = max(best, j - i - 1)\n\n return best\n\n```
10
1
[]
1
maximum-distance-between-a-pair-of-values
📌 Python3 simple solution using two pointers
python3-simple-solution-using-two-pointe-kz3h
\nclass Solution:\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n length1, length2 = len(nums1), len(nums2)\n i,j = 0,0\n
dark_wolf_jss
NORMAL
2022-06-28T12:57:30.958436+00:00
2022-06-28T12:57:30.958479+00:00
674
false
```\nclass Solution:\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n length1, length2 = len(nums1), len(nums2)\n i,j = 0,0\n \n result = 0\n while i < length1 and j < length2:\n if nums1[i] > nums2[j]:\n i+=1\n else:\n result = max(result,j-i)\n j+=1\n \n return result\n```
8
0
['Two Pointers', 'Python3']
0
maximum-distance-between-a-pair-of-values
Easy Java solution || 2 Pointer
easy-java-solution-2-pointer-by-gau5tam-gwb3
Please UPVOTE if you like my solution!\n\n\nclass Solution {\n public int maxDistance(int[] nums1, int[] nums2) {\n int i = 0;\n int j = 0;\n
gau5tam
NORMAL
2023-04-20T16:50:20.857882+00:00
2023-04-20T16:50:20.857921+00:00
112
false
Please **UPVOTE** if you like my solution!\n\n```\nclass Solution {\n public int maxDistance(int[] nums1, int[] nums2) {\n int i = 0;\n int j = 0;\n int ans = 0;\n while(i<nums1.length && j<nums2.length){\n if(nums1[i] <= nums2[j]){\n ans = Math.max(ans,j-i);\n j++; \n }\n else{\n i++;\n } \n \n }\n return ans;\n }\n}\n```
7
0
['Two Pointers', 'Java']
0
maximum-distance-between-a-pair-of-values
Two Pointer solution in C++ and Java
two-pointer-solution-in-c-and-java-by-ka-p86r
Complexity\n- Time complexity:\n Add your time complexity here, e.g. O(n) \n O(n)\n\n- Space complexity:\n Add your space complexity here, e.g. O(n) \n O(
Kashif_Rahman
NORMAL
2022-10-14T16:17:45.470196+00:00
2022-10-14T16:17:45.470229+00:00
451
false
# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n O(n)\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n O(1)\n\n# Code\nJava Solution \n```\nclass Solution {\n public int maxDistance(int[] nums1, int[] nums2) {\n int i = 0, j = 0, ans = 0;\n while(i < nums1.length&& j < nums2.length){\n if(nums1[i] > nums2[j])\n i++;\n else{\n ans = Integer.max(ans, j-i);\n j++;\n }\n }\n return ans;\n }\n}\n```\nC++ solution\n```\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int i = 0, j = 0, ans = 0;\n while(i < nums1.size() && j < nums2.size()){\n if(nums1[i] > nums2[j])\n i++;\n else{\n ans = max(ans, j-i);\n j++;\n }\n }\n return ans;\n}\n};\n```\n
7
0
['Two Pointers', 'Binary Search', 'C++', 'Java']
1
maximum-distance-between-a-pair-of-values
JAVA 2 Pointer
java-2-pointer-by-himanshuchhikara-hmkt
CODE:\n\n public int maxDistance(int[] nums1, int[] nums2) {\n int i=0 , j=0;\n int result=0;\n while(i<nums1.length && j<nums2.length){
himanshuchhikara
NORMAL
2021-05-12T17:00:54.643337+00:00
2021-05-12T17:00:54.643383+00:00
523
false
**CODE:**\n```\n public int maxDistance(int[] nums1, int[] nums2) {\n int i=0 , j=0;\n int result=0;\n while(i<nums1.length && j<nums2.length){\n if(nums1[i]>nums2[j]){\n i++;\n }else{\n result=Math.max(j-i,result); //if(j<i , j-i will be negative and result will not get updated \n j++;\n }\n }\n return result;\n}\n```\n\n**Complexity:**\n`Time:O(maximum(n,m)) and Space:O(1)`\n\n
7
0
['Two Pointers', 'Java']
0
maximum-distance-between-a-pair-of-values
Easy 2-Pointer Solution
easy-2-pointer-solution-by-admin007-i701
\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n m, n = len(nums1), len(nums2)\n i = j = 0\n ans = 0\n whil
admin007
NORMAL
2021-05-09T04:56:29.701702+00:00
2021-05-09T04:56:29.701730+00:00
478
false
```\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n m, n = len(nums1), len(nums2)\n i = j = 0\n ans = 0\n while i < m and j < n:\n while j < n and nums1[i] <= nums2[j]:\n j += 1\n ans = max(ans, j - i - 1)\n while i < m and j < n and not (nums1[i] <= nums2[j]):\n i += 1\n return ans\n```
6
0
[]
0
maximum-distance-between-a-pair-of-values
python 2 pointers O(N)
python-2-pointers-on-by-tiantianluck-boo0
\tclass Solution(object):\n\t\tdef maxDistance(self, nums1, nums2):\n\t\t\t"""\n\t\t\t:type nums1: List[int]\n\t\t\t:type nums2: List[int]\n\t\t\t:rtype: int\n\
tiantianluck
NORMAL
2021-05-09T04:06:21.932973+00:00
2021-05-09T04:06:21.933001+00:00
468
false
\tclass Solution(object):\n\t\tdef maxDistance(self, nums1, nums2):\n\t\t\t"""\n\t\t\t:type nums1: List[int]\n\t\t\t:type nums2: List[int]\n\t\t\t:rtype: int\n\t\t\t"""\n\t\t\tret = 0\n\t\t\ti, j = 0, 0\n\t\t\twhile i < len(nums1) and j < len(nums2):\n\t\t\t\tif nums1[i] <= nums2[j]:\n\t\t\t\t\tret = max(ret, j-i)\n\t\t\t\t\tj += 1\n\t\t\t\telse:\n\t\t\t\t\ti += 1\n\t\t\t\t\tj += 1\n\t\t\treturn ret\n
6
1
[]
5
maximum-distance-between-a-pair-of-values
Python Binary Solution Shortest
python-binary-solution-shortest-by-manis-cgxf
```class Solution:\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n distance = 0\n \n for i in range(len(nums1)):\n
manishchhipa
NORMAL
2022-05-07T10:34:25.842156+00:00
2022-05-07T10:35:48.450202+00:00
277
false
```class Solution:\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n distance = 0\n \n for i in range(len(nums1)):\n start = i\n end = len(nums2)-1\n while start<= end:\n mid = (start+end)//2\n\t\t\t\t\n if nums2[mid] < nums1[i]:\n end = mid-1\n else:\n start = mid+1\n distance = max(distance, end -i)\n \n return distance
5
0
['Binary Tree', 'Python']
0
maximum-distance-between-a-pair-of-values
Binary Search||Lower_bound||C++
binary-searchlower_boundc-by-geekybits-q95v
EXPLANATION:The problem demands that for any element nums1[i], we have to find the farthest element nums2[j] with j>=i such that the nums2[j] element is not les
GeekyBits
NORMAL
2021-05-12T10:42:31.220397+00:00
2021-05-12T10:43:20.898125+00:00
310
false
**EXPLANATION:**The problem demands that for any element nums1[i], we have to find the farthest element nums2[j] with j>=i such that the nums2[j] element is not less than nums1[i].\n\nA brute force way of doing the same would be to iterate over every j in the range i <=j && j <n" , but then we aren\'t using the fact that the two arrays are sorted in non-increasing/decreasing order.\n\nSo, what we do is, reverse the second array to make it increasing and then for every nums1[i], we find the first element which is either equal to or greater than it i.e. Lower_bound of the element (Note that for the original array this would be the same element which would be farther away satisfying the condition).\n\n\n```\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n \n reverse(nums2.begin(),nums2.end());\n int ans = 0;\n for(int i=0;i<nums1.size();++i){\n auto it = lower_bound(nums2.begin(),nums2.end(),nums1[i]) - nums2.begin(); //Finds first element greater than or equal to nums1[i]\n int position= nums2.size() - 1 - it; //Index of the found element in the original array\n if(i<=position) ans = max(ans,position-i); //Update distance \n }\n return ans;\n \n }\n```\n**Feel free to ask any question in the comment section.**\nI hope that you\'ve found the solution useful.\nIn that case, please do upvote and encourage me to on my quest to document all leetcode problems\uD83D\uDE03\n**Happy Coding :)**\n};
5
1
[]
3
maximum-distance-between-a-pair-of-values
Python Solution- Simple -2 Pointer
python-solution-simple-2-pointer-by-sash-srxi
\nclass Solution:\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n max_diff = 0\n i = 0\n j = 0\n while i<le
sasha59
NORMAL
2021-05-09T04:04:58.662895+00:00
2021-05-09T04:09:14.760753+00:00
256
false
```\nclass Solution:\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n max_diff = 0\n i = 0\n j = 0\n while i<len(nums1) and j <len(nums2):\n if i <= j:\n if nums1[i] <= nums2[j]:\n max_diff=max(max_diff,j-i)\n j += 1\n else:\n i += 1\n else:\n j += 1\n return max_diff\n \n```
5
0
['Python', 'Python3']
2
maximum-distance-between-a-pair-of-values
2 ms faster than 99.57% Java solution of O(n) time and O(1) space
2-ms-faster-than-9957-java-solution-of-o-zlqb
Traversing from the right to the left, let \n i be the pointer in nums1 and \n j be the pointer of the rightmost index in nums2 that is larger than nums1[i].\n\
anf
NORMAL
2022-01-10T22:23:28.194406+00:00
2022-01-10T22:23:28.194459+00:00
272
false
Traversing from the right to the left, let \n* `i` be the pointer in `nums1` and \n* `j` be the pointer of the rightmost index in `nums2` that is larger than `nums1[i]`.\n\nWhile we move `i` from the right to the left, we adjust `j` accordingly. The difference of `j - i` is the furthest pair for the element `nums1[i]`.\n\nPlease upvote if you like it. Thank you! \uD83D\uDE0A\n\n```\nclass Solution {\n public int maxDistance(int[] nums1, int[] nums2) {\n int res = 0;\n int j = nums2.length - 1;\n for (int i = nums1.length - 1; i != -1; i--) {\n while (j >= i && nums2[j] < nums1[i])\n j--;\n res = Math.max(res, j - i);\n }\n return res;\n }\n}\n```
4
0
['Two Pointers', 'Java']
0
maximum-distance-between-a-pair-of-values
JavaScript O(n) time and O(1) space, 2 pointers solution
javascript-on-time-and-o1-space-2-pointe-5wit
To get the best answer we want to maximize j and minimize i, while maintaining 2 invariants:\n i <= j\n nums1[i] <= nums2[j]\n\nThis can be translated almost di
user4125zi
NORMAL
2021-05-09T06:21:42.402607+00:00
2021-05-09T06:21:42.402648+00:00
354
false
To get the best answer we want to maximize j and minimize i, while maintaining 2 invariants:\n* i <= j\n* nums1[i] <= nums2[j]\n\nThis can be translated almost directly to code:\n\n```javascript\nvar maxDistance = function(nums1, nums2) {\n let i = 0, j = 0;\n \n let ans = 0;\n while (i < nums1.length && j < nums2.length) {\n // maintain the i <= j invariant\n j = Math.max(j, i);\n \n // we want to maximize j so move it forward whenever possible\n while (nums1[i] <= nums2[j]) {\n ans = Math.max(ans, j - i);\n j++;\n }\n \n // we want to minimize i so move it forward only to maintain invariants\n i++;\n }\n \n return ans;\n};\n```
4
0
['Two Pointers', 'JavaScript']
1
maximum-distance-between-a-pair-of-values
C++ easy solution || binary search
c-easy-solution-binary-search-by-sriniva-myxu
\nint maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int n = nums1.size();\n int maxi =0;\n for(int i=0;i<n;i++){\n int
srinivasteja18
NORMAL
2021-05-09T04:01:19.769449+00:00
2021-05-09T04:01:19.769471+00:00
262
false
```\nint maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int n = nums1.size();\n int maxi =0;\n for(int i=0;i<n;i++){\n int num = nums1[i];\n int ind = binary_search(nums2,num);\n maxi = max(maxi,ind-i);\n }\n return maxi;\n }\n int binary_search(vector<int>&nums,int k){\n int i=0,j=nums.size()-1;\n while(i<j){\n int mid = (i+j)/2+1;\n if(nums[mid] < k) j = mid-1;\n else i = mid;\n }\n return j;\n }\n```
4
2
[]
0
maximum-distance-between-a-pair-of-values
Binary Search , Easy C++ ✅✅
binary-search-easy-c-by-deepak_5910-9e4i
Approach\n Describe your approach to solving the problem. \nHere both the Array are sorted, so we can solve this problem in O(N*Log(N)) time using binary search
Deepak_5910
NORMAL
2023-07-11T08:44:07.096575+00:00
2023-07-11T08:44:07.096596+00:00
103
false
# Approach\n<!-- Describe your approach to solving the problem. -->\nHere both the Array are **sorted**, so we can solve this problem in **O(N*Log(N))** time using **binary search**.\n\n**For example:- Array-1 = [55,30,5,4,2], Array-2 = [100,20,10,10,5]**\nFirst traverse the array from 0 to n and find the index value j **(such as j>=i and Array-2[j]>=Array-1[i])** using **binary search**.\n\n\n\n\n# Complexity\n- Time complexity:O(N*Log(N))\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:O(1)\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\npublic:\n int maxDistance(vector<int>& arr1, vector<int>& arr2) {\n int n = arr1.size(),m = arr2.size(),ans = 0;\n for(int i = 0;i<n;i++)\n {\n int ind = -1,left = i,right = m-1;\n while(left<=right)\n {\n int mid = (left+right)/2;\n if(arr2[mid]>=arr1[i])\n {\n ind = mid;\n left = mid+1;\n }\n else\n right = mid-1;\n }\n if(ind!=-1) ans = max(ans,ind-i);\n }\n return ans;\n }\n};\n```\n![upvote.jpg](https://assets.leetcode.com/users/images/bcc47018-8ac2-48db-8231-fe92968317e6_1689065040.8459961.jpeg)\n
3
0
['C++']
0
maximum-distance-between-a-pair-of-values
Easy two pointer solution| JAVA | Beats 95% .
easy-two-pointer-solution-java-beats-95-wfwgx
Approach\n1. Initialize both pointers as 0 at first.\n2. Add a loop unti both the pointers are equal to the length of the array.\n3. For each value of the point
black_spade212
NORMAL
2023-06-23T04:57:19.749186+00:00
2023-06-23T04:57:19.749219+00:00
551
false
# Approach\n1. Initialize both pointers as 0 at first.\n2. Add a loop unti both the pointers are equal to the length of the array.\n3. For each value of the pointer check the condition given arr[i-1] >= arr[i]\n4. If the condition statisfies then increment pointer 2 and store the difference in max;\n5. Else increment the pointer 1.\n6. Return the max value.\n# Complexity\n- Time complexity:O(N)\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:O(1)\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\n public int maxDistance(int[] nums1, int[] nums2) {\n int max = 0;\n int diff =0;\n int p1 =0;\n int p2 = 0;\n while(p1<nums1.length && p2<nums2.length){\n if(nums2[p2] >= nums1[p1]){\n diff = p2 -p1;\n max = Math.max(max,diff);\n p2++;\n }\n else{\n p1++;\n }\n \n }\n return max;\n }\n}\n```
3
0
['Two Pointers', 'Java']
1
maximum-distance-between-a-pair-of-values
JAVA | Binary Search
java-binary-search-by-sarvesh33-llrm
Approach\nTraverse in nums1 and for each index use binary search to find the index of farthest equal element or greater element in nums2.\n\n# Code\n\nclass Sol
sarvesh33
NORMAL
2023-06-19T14:15:07.134012+00:00
2023-06-19T14:15:07.134048+00:00
62
false
# Approach\nTraverse in nums1 and for each index use binary search to find the index of farthest equal element or greater element in nums2.\n\n# Code\n```\nclass Solution {\n public int binarySearch(int[] arr, int i, int target){\n int low = i, high = arr.length-1;\n int res = -1;\n \n while(low<=high){\n int mid = high - (high-low)/2;\n if(arr[mid] >= target){\n res = Math.max(mid, res);\n low = mid+1;\n }\n else{\n high = mid-1;\n }\n }\n return res;\n }\n public int maxDistance(int[] nums1, int[] nums2) {\n int max = 0;\n for(int i=0; i<nums1.length; i++){\n int j = binarySearch(nums2, i, nums1[i]);\n max = Math.max(max, j-i);\n }\n return max;\n }\n}\n```
3
0
['Java']
0
maximum-distance-between-a-pair-of-values
||Beats 99%|| very easy java solution using two pointers ||
beats-99-very-easy-java-solution-using-t-jnq7
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
ammar_saquib
NORMAL
2023-05-02T19:17:34.337791+00:00
2023-05-02T19:17:34.337832+00:00
111
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\n public int maxDistance(int[] nums1, int[] nums2) {\n int max=0;\n int i=0,j=0;\n while(i<nums1.length && j<nums2.length)\n {\n if(nums1[i]>nums2[j])\n i++;\n else\n max=Math.max(max,j++-i);\n \n }\n return max;\n }\n}\n```
3
0
['Two Pointers', 'Java']
0
maximum-distance-between-a-pair-of-values
[C++] Brute - Better - Optimal
c-brute-better-optimal-by-suren-yeager-mkyc
Brute Force (TLE):\n\n# Code\n\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2){\n int n1=size(nums1),n2=size(nums
suren-yeager
NORMAL
2023-03-15T15:25:16.794047+00:00
2023-03-15T15:25:16.794078+00:00
216
false
# Brute Force (TLE):\n\n# Code\n```\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2){\n int n1=size(nums1),n2=size(nums2),res=0;\n for(int i=0;i<n1;i++){\n for(int j=i;j<n2;j++) {\n if(nums1[i]<=nums2[j]) res=max(best,j-i);\n }\n }\n return res;\n }\n};\n```\n# Complexity\n- Time complexity: $$O(n*m)$$\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity: $$O(1)$$\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n---\n\n# Better :\n\n# Code\n```\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2){\n int n1=size(nums1),n2=size(nums2),res=0; \n for(int i=0;i<n1;i++){\n int val=nums1[i];\n int l=i,r=n2-1;\n while(l<=r){\n int mid=l+(r-l)/2;\n if(nums2[mid]>=val){\n res=max(res,mid-i);\n l=mid+1;\n }\n else r=mid-1;\n }\n }\n return res;\n }\n};\n```\n# Complexity\n- Time complexity: $$O(n*log(m))$$\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity: $$O(1)$$\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n\n---\n\n\n\n# Optimal :\n\n# Code\n```\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2){\n int n1=size(nums1),n2=size(nums2),res=0;\n for(int i=0,j=0;i<n1&&j<n2;){\n if(nums1[i]<=nums2[j]) res=max(res,(j++)-i);\n else i++;\n }\n return res;\n }\n};\n```\n# Complexity\n- Time complexity: $$O(n+m)$$\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity: $$O(1)$$\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n\n\n
3
0
['Two Pointers', 'Binary Search', 'C++']
0
maximum-distance-between-a-pair-of-values
Python - O(N^2) ➜ O(NLogN) ➜ O(N) | EXPLAINED
python-on2-onlogn-on-explained-by-itsarv-yy06
1. BRUTE FORCE - O(N^2) - TLE\n\nThe Brute Force approach is pretty simple. For each element, go through each element in second list that is greater or equal an
itsarvindhere
NORMAL
2022-10-15T09:22:23.844491+00:00
2022-10-15T09:27:16.033728+00:00
423
false
# **1. BRUTE FORCE - O(N^2) - TLE**\n\nThe Brute Force approach is pretty simple. For each element, go through each element in second list that is greater or equal and keep calculating the maxDistance. Not efficient and will give TLE for large arrays. But from this, we can start thinking about optimizing our solution.\n\n```\ndef maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n # In Brute force approach, for each element in nums2\n # we go through each less or equal element in nums2\n # And we keep track of the maximum distance\n \n maxDistanceSoFar = 0\n \n for i,num1 in enumerate(nums1):\n for j in range(i, len(nums2)):\n if num1 <= nums2[j]: maxDistanceSoFar = max(maxDistanceSoFar, j - i) \n else: break\n \n return maxDistanceSoFar\n```\n\n# **2. BINARY SEARCH - O(NLogN)**\n\nBecause it is given that both the arrays are sorted in decreasing order, it means, instead of linear search on second array, we can perform Binary search. \n\t\n\tWhat do we have to search?\n\n\tWe have to search for the maximum possible value of "j" such that \n\tthe element at "j" index is >= particular element in the first list\n\t\nIf the element at mid satisfies the condition, it might be a possible solution but it is also possible that we may find an element after it that also satisfies the condition. In that case, we will get a larger distance. Hence, even if mid satisfies the condition, we continue searching on right side of mid.\n\t\n\tdef maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n # Because we are given that both arrays are sorted in decreasing order\n # We can use Binary search instead of linear search in the inner loop\n \n maxDistanceSoFar = 0\n \n for i,num1 in enumerate(nums1):\n # Binary search for the maximum index on right of i index at which element is >= num1\n start = i\n end = len(nums2) - 1\n \n while start <= end:\n mid = start + (end - start) // 2\n \n # If mid element is greater than num1, that\'s one possible solution\n # But we want to maximize the distance\n if nums2[mid] >= num1:\n maxDistanceSoFar = max(maxDistanceSoFar, mid - i)\n start = mid + 1\n else: end = mid - 1\n \n return maxDistanceSoFar\n\t\t\n# **3. TWO POINTERS - O(N)**\n\nUsing Two Pointers approach, we can do this problem in an O(N) time complexity which means this is the fastest solution among the three. \n\nWe start with both the pointers at the beginning of both lists as i <= j\n\nAnd now, we will compare the elements and check whether num2[j] >= num1[i]. If yes, calculate the distance and update the maxDistance if this distance is bigger than previous. And also, since we are looking for the maximum possible distance, we will also increment j. \n\nBut if num2[j] < num1[i], that means not only this element does not satisfy the condition, but no element after it will satisfy because array is sorted in decreasing order. Hence, it means we are done with nums1[i] and so, we can move on to the next ith index element.\n\n\tExample - nums1 = [55,30,5,4,2], nums2 = [100,20,10,10,5]\n\t\n\tInitially, i = 0, j = 0, maxDistance = 0\n\t\n\tSo, we see that num1[i] = 55 and num2[j] = 100\n\t\n\tSince 100 >= 50. We calculate the distance and it comes out to be 0 since j - i => 0 - 0 => 0\n\t\n\tSince we want to maximize the distance, we increment j. \n\t\n\tNow, i = 0, j = 1, num1[i] = 55 and num2[j] = 20\n\t\n\tIs 20 >= 55? NO! It means, no element after it is valid as well. So, for 55, we are done. Increment i.\n\t\n\tNow, i = 1, j = 1, num1[i] = 30 and num2[j] = 20\n\t\n\tIs 20 >= 30? NO. Again, increment i.\n\t\n\tWe see that here, i = 2 and j = 1. This violates the condition that says i <= j. \n\t\n\tHence, to make sure this condition is not violated, if i becomes > j when we increment it, we will also increment j.\n\t\n\tAnd this process continues till => i <len(nums1) and j < len(nums2\n\t\n**HERE IS THE CODE -**\n\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n # Since both arrays are sorted in non-decreasing order\n # We can try two pointer approach here\n \n i = 0\n j = 0\n maxDistance = 0\n \n while i < len(nums1) and j < len(nums2): \n # If nums2[j] >= nums1[i] that means it is one possible solution\n # But because we want to maximize the distance, we increment j\n # Because if next element also satisfies this condition, then it will have a larger distance\n if nums2[j] >= nums1[i]: \n maxDistance = max(maxDistance, j - i)\n j += 1\n \n else: \n i += 1\n # We also want to make sure i is <= j\n if i > j: j += 1\n \n return maxDistance
3
0
['Two Pointers', 'Binary Search', 'Binary Tree', 'Python']
0
maximum-distance-between-a-pair-of-values
✔️Python, C++,Java|| Beginner level ||As Simple As U Think||Simple-Short-Solution✔️
python-cjava-beginner-level-as-simple-as-84z0
Please upvote to motivate me in my quest of documenting all leetcode solutions. HAPPY CODING:)\nAny suggestions and improvements are always welcome.\n___\n__\nQ
Anos
NORMAL
2022-08-17T18:03:53.616333+00:00
2022-08-17T18:03:53.616380+00:00
238
false
***Please upvote to motivate me in my quest of documenting all leetcode solutions. HAPPY CODING:)\nAny suggestions and improvements are always welcome*.**\n___________________\n_________________\n***Q1855. Maximum Distance Between a Pair of Values***\nYou are given two non-increasing 0-indexed integer arrays nums1 and nums2.\n\nA pair of indices` (i, j`), where` 0 <= i < nums1.length` and` 0 <= j < nums2.length`, is valid if both` i <= j` and `nums1[i] <= nums2[j]`. The distance of the pair is `j - i`.\n\nReturn the maximum distance of any valid `pair (i, j)`. If there are no valid pairs, return 0.\n\nAn array arr is non-increasing if `arr[i-1] >= arr[i]` for every` 1 <= i < arr.length`.\n____________________________________________________________________________________________________________________\n____________________________________________________________________________________________________________________\n\u2705 **Python Code** :\n```\nclass Solution:\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n i,j,n,m,res=0,0,len(nums1),len(nums2),0\n while i<n and j<m:\n if nums1[i]>nums2[j]:\n i+=1\n else:\n res=max(res,j-i)\n j+=1\n return res\n```\n**Runtime:** 1627 ms\t\n**Memory Usage:** 31.1 MB\t\n____________________________________________________________________________________________________________________\n____________________________________________________________________________________________________________________\n\n\u2705 **Java Code** :\n```\nclass Solution {\n public int maxDistance(int[] nums1, int[] nums2) {\n int i=0,j=0,res=0,n=nums1.length,m=nums2.length;\n while(i<n && j<m)\n {\n if(nums1[i]>nums2[j])\n i++;\n else\n res=Math.max(res,j++-i);\n }\n return res; \n }\n}\n```\n**Runtime:** 2 ms\t\n**Memory Usage:** 48.6 MB\n____________________________________________________________________________________________________________________\n____________________________________________________________________________________________________________________\n\u2705 **C++ Code** :\n```\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int i=0,j=0,res=0,n=nums1.size(),m=nums2.size();\n while(i<n && j<m)\n {\n if(nums1[i]>nums2[j])\n i++;\n else\n res=max(res,j++-i);\n }\n return res;\n }\n};\n```\n**Runtime:** 325 ms\t\n**Memory Usage:** 98.5 MB\t\t\n____________________________________________________________________________________________________________________\n____________________________________________________________________________________________________________________\n\nIf you like the solution, please upvote \uD83D\uDD3C\nFor any questions, or discussions, comment below. \uD83D\uDC47\uFE0F\n
3
0
['C', 'Binary Tree', 'Python', 'Java']
0
maximum-distance-between-a-pair-of-values
C++ O(N) Easy Solution Using two pointers
c-on-easy-solution-using-two-pointers-by-o818
\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int i=0,j=0;\n int n=nums1.size(),m=nums2.size();\n
karan252
NORMAL
2022-06-29T21:24:02.045664+00:00
2022-06-29T21:24:02.045692+00:00
93
false
```\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int i=0,j=0;\n int n=nums1.size(),m=nums2.size();\n int ans=0;\n while(i<n && j<m)\n {\n if(nums1[i]<=nums2[j]) \n {\n ans=max(j-i,ans);\n j++;\n }\n else\n {\n i++;\n }\n }\n return ans;\n }\n};\n```
3
0
['Two Pointers', 'C']
0
maximum-distance-between-a-pair-of-values
C++ Binary Search and Two Pointer Approach
c-binary-search-and-two-pointer-approach-anbc
Binary Search--->\n\n\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int n=nums1.size();\n int m=nums
Yogesh02
NORMAL
2022-06-23T17:33:35.335990+00:00
2022-06-23T17:33:35.336038+00:00
179
false
`Binary Search--->`\n```\n\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int n=nums1.size();\n int m=nums2.size();\n int maxi=INT_MIN;\n for(int i=0;i<n;i++){\n int l=i,h=m-1;\n while(l<=h){\n int mid=(l+h)/2;\n if(nums1[i]<=nums2[mid]){\n maxi=max(mid-i,maxi);\n l=mid+1;\n }\n else if(nums1[i]>nums2[mid]){\n h=mid-1;\n }\n \n }\n }\n return maxi==INT_MIN?0:maxi;\n }\n};\n```\n`Two Pointers--->`\n```\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int n=nums1.size();\n int m=nums2.size();\n int maxi=0;\n int l=0,h=0;\n while(l<n && h<m){\n if(nums1[l]>nums2[h]) l++;\n else {\n maxi=max(h-l,maxi);\n h++;\n }\n \n }\n \n return maxi;\n }\n};\n```
3
0
['Two Pointers', 'C', 'Binary Tree', 'C++']
1
maximum-distance-between-a-pair-of-values
✅ [C++] Intuitive 2 pointers method
c-intuitive-2-pointers-method-by-bit_leg-487e
\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int i = 0, j = 0;\n int ans = 0;\n\t\t// One pointer
biT_Legion
NORMAL
2022-05-27T05:35:35.064565+00:00
2022-05-27T05:35:35.064612+00:00
96
false
```\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int i = 0, j = 0;\n int ans = 0;\n\t\t// One pointer is at first array, another is at 2nd array. \n while(i<nums1.size() and j<nums2.size()){\n\t\t\t// If i is greater than j, we move j to satisfy the conditions. \n if(i>j){ \n j++;\n continue;\n }\n\t\t\t// The above condition is already satisfied. If the below satisfies too, we update the answer AND move j\n\t\t\t// in the hope of finding a better answer for current i. NOTE we need to maximize the gap (j-i\n if(nums1[i]<=nums2[j]){\n ans = max(ans,j-i);\n j++;\n }\n else\n i++; // If the condition is not satisfied for current i, we move i\n }\n\t\t// If nums2 has not been fully traversed yet, we traverse it with the additional while loop and check our \n\t\t// answer with the last element of nums1.\n while(j<nums2.size()){\n if(nums1.back()<=nums2[j]){\n int temp = j-(nums1.size()-1);\n ans = max(ans,temp);\n }\n j++;\n }\n\t\t\n\t\t// NOTE that we are not doing this for nums1, because it would be of no good! If we finish nums2\n\t\t// before nums1, then j will always be less than i and thus our conditions will not be satisfied.\n return ans;\n }\n};\n```
3
0
['Two Pointers', 'C']
0
maximum-distance-between-a-pair-of-values
✅C++ | ✅Two Pointer |✅Binary Search|✅Easy O(N) and O(N*LogN)solution
c-two-pointer-binary-searcheasy-on-and-o-3whh
Just a few words to explain the solution a bit.\nThere is Three Approaches for this problem comes in my mind.\n1.Brute force : check for every element in array
aman_2_0_2_3
NORMAL
2022-05-20T19:17:55.212942+00:00
2022-05-20T19:17:55.212966+00:00
226
false
Just a few words to explain the solution a bit.\n**There is Three Approaches for this problem comes in my mind.**\n**1.Brute force : check for every element in array A to every element of array B then store the result in maxx variable. return it. But this will gives you TLE because of it\'s time complexity is much high i.e. O(n^2).**\n\n**2.Binary Search : Since both of the given array are sorted so take any one array iterate over it and try to upperbound of reverse array in second array. Time complexity O(N*LogM)**\n\n```\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int maxx = 0;\n for(int i=0;i<nums1.size();i++){\n int target = nums1[i];\n vector<int>::iterator up;\n up = upper_bound(nums2.begin(),nums2.end(),target, greater<int>());\n int idx = up - nums2.begin();\n maxx = max(maxx,idx-1-i);\n }\n return maxx;\n }\n};\n```\n\n**3.Two pointer Approach. Time complexity is Linear. (Best Solution).**\n```\nclass Solution {\npublic:\n\tint maxDistance(vector<int>& nums1, vector<int>& nums2) {\n\t\tint ans = 0;\n\t\tint i = 0;\n\t\tint j = 0;\n\t\twhile(i < nums1.size() and j < nums2.size()){\n\t\t\tif(nums1[i] <= nums2[j]){\n\t\t\t\tif(i <= j){\n\t\t\t\t\tans = max(ans, j++ - i);\n\t\t\t\t}\n\t\t\t}\n\t\t\telse{\n\t\t\t\ti++;\n\t\t\t}\n\t\t}\n\t\treturn ans;\n\t}\n};\n```\n**PLEASE PLEASE..............UPVOTE ME**
3
0
['Binary Search', 'C', 'C++']
1
maximum-distance-between-a-pair-of-values
C++ binary search accepted solution #ACCEPTED😍😍
c-binary-search-accepted-solution-accept-uvbg
class Solution {\npublic:\n\n int maxDistance(vector& nums1, vector& nums2) {\n int ans = 0;\n \n int n = nums1.size();\n int m =
kinggaurav
NORMAL
2022-02-18T20:27:47.124667+00:00
2022-02-18T20:27:47.124711+00:00
271
false
class Solution {\npublic:\n\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int ans = 0;\n \n int n = nums1.size();\n int m = nums2.size();\n \n for(int i = 0 ; i < n ; i++){\n int low = i;\n int high = m - 1;\n int value = i;\n \n while(low <= high){\n int mid = (low + high) / 2;\n \n if(nums2[mid] >= nums1[i]){\n low = mid + 1;\n value = mid;\n }else{\n high = mid - 1;\n }\n }\n \n ans = max(ans , value - i);\n }\n \n return ans;\n }\n};
3
0
['C', 'Binary Tree']
0
maximum-distance-between-a-pair-of-values
Python Simple Two pointers
python-simple-two-pointers-by-solarbeam-m2vq
Extend j to the right as far as possible. Once we\'ve found a max distance we don\'t need to check any lengths smaller than that, so update i and j together.\n\
solarbeam
NORMAL
2021-05-09T04:29:51.223965+00:00
2021-05-09T04:31:56.046145+00:00
137
false
Extend j to the right as far as possible. Once we\'ve found a max distance we don\'t need to check any lengths smaller than that, so update i and j together.\n\n```\ndef maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n i,j = 0,0\n max_distance = 0\n \n while i < len(nums1) and j < len(nums2):\n if nums1[i] <= nums2[j]:\n max_distance = max(max_distance, j-i)\n j += 1\n else:\n j += 1\n i += 1\n\t\t\t\t\n return max_distance\n```
3
0
['Python']
0
maximum-distance-between-a-pair-of-values
C++ solution using lower_bound iterator with comments
c-solution-using-lower_bound-iterator-wi-gdwh
\nclass Solution\n{\npublic:\n //to return maximum among two elements\n int max(int a, int b)\n {\n if (a > b)\n return a;\n r
uzu86
NORMAL
2021-05-09T04:19:52.228327+00:00
2021-05-09T04:32:59.666751+00:00
189
false
```\nclass Solution\n{\npublic:\n //to return maximum among two elements\n int max(int a, int b)\n {\n if (a > b)\n return a;\n return b;\n }\n int maxDistance(vector<int> &nums1, vector<int> &nums2)\n {\n int dist = 0, n1 = nums1.size(), n2 = nums2.size();\n\n //sorting nums2 vector in ascending order\n sort(nums2.begin(), nums2.end());\n\n for (int i = 0; i < min(n1, n2); i++)\n {\n //lower_bound will return refernce to element >= nums[i]\n auto itr = lower_bound(nums2.begin(), nums2.end() - i, nums1[i]);\n\n //in case elemt found\n if (itr != nums2.end() - i)\n {\n //as previously sorted in decreasing order\n int original_index = n2 - 1 - (itr - nums2.begin());\n dist = max(dist, original_index - i);\n }\n }\n return dist;\n }\n};\n```
3
0
['Sorting', 'Binary Tree', 'Iterator']
0
maximum-distance-between-a-pair-of-values
Binary Search Python Explained
binary-search-python-explained-by-jiggly-0emi
Intuition\nThrough the given problem we have few conditions\n1. j >= i\n2. nums2[j] > nums1[i]\n\nNow to satisfy these conditions for every element in of nums1
JigglyyPuff
NORMAL
2023-04-18T15:08:58.485037+00:00
2023-04-18T15:09:19.877271+00:00
495
false
# Intuition\nThrough the given problem we have few conditions\n`1. j >= i`\n`2. nums2[j] > nums1[i]`\n\nNow to satisfy these conditions for every element in of nums1 we have to iterate over nums2(i, len(nums2))\n\nso we will use **binary search** having the above range always\nnow if we find *nums[mid] < nums1[i] => we can\'t consider* this thus shift ur right\n\nif *nums[mid] >= nums1[i] => we know the array is in descending order so store this mid index values as farthestSeen* now and shift left pointer.\n\n`why not return here?` Because to get the farthest position we have to find element > nums1[i] as far as possible from i\n\nCalculate the diff(j-i) and return the maxDiff as your ans :)\n\n# Code\n```\nclass Solution:\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n def binary(left, right, num):\n farthestPos = 0\n while left < right:\n mid = (left + right) // 2\n if nums2[mid] < num:\n right = mid\n else:\n farthestPos = max(farthestPos, mid)\n left = mid + 1\n if nums2[left] >= num:\n farthestPos = max(farthestPos, left)\n return farthestPos\n maxDiff = 0\n for i in range(min(len(nums1), len(nums2))):\n if nums1[i] > nums2[i]:\n continue\n else:\n j = binary(i, len(nums2)-1, nums1[i])\n maxDiff = max(maxDiff, (j-i))\n return maxDiff\n```
2
0
['Array', 'Binary Search', 'Python3']
0
maximum-distance-between-a-pair-of-values
Easy C++ ✔|| Two Pointers || O(n+m)
easy-c-two-pointers-onm-by-snowflakes17-ilrr
\n# Approach\n Describe your approach to solving the problem. \n It first initializes two integer variables n and m with the sizes of nums1 and nums2, respectiv
snowflakes17
NORMAL
2023-04-03T17:37:22.663828+00:00
2023-04-03T17:37:22.663871+00:00
167
false
\n# Approach\n<!-- Describe your approach to solving the problem. -->\n* It first initializes two integer variables `n` and `m` with the **sizes of nums1 and nums2**, respectively.\n* It then initializes three integer variables `i, j,` and `ans to 0`. * The variable `i` will be used to **iterate over nums1**, the variable `j` will be used to `iterate over nums2`, and the variable` ans` will store the maximum distance found so far.\n* It enters a **while loop** that continues as long as `i < n` and \n`j < m`. Inside the loop, it checks if **nums1[i] is greater than nums2[j]**. If so, it increments i. Otherwise, it updates ans with the maximum of ans and the difference between j and i, and then increments j.\n* After the loop finishes, it **returns ans**.\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n$$O(n+m)$$\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n$$O(1)$$\n\n# Code\n```\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n \n int n=nums1.size();\n int m=nums2.size();\n\n int i=0,j=0;\n int ans=0;\n\n while(i<n && j<m){\n if(nums1[i]>nums2[j]){\n i++;\n }\n else{\n ans=max(ans,j-i);\n j++;\n }\n }\n return ans;\n }\n};\n```
2
0
['C++']
0
maximum-distance-between-a-pair-of-values
simple binary search || must see
simple-binary-search-must-see-by-akshat0-jg7n
Code\n\nstatic int fast_io = []() \n{ \n std::ios::sync_with_stdio(false); \n cin.tie(nullptr); \n cout.tie(nullptr); \n return 0; \n}();\n\n#ifdef
akshat0610
NORMAL
2023-03-14T08:33:49.798129+00:00
2023-03-14T08:33:49.798170+00:00
192
false
# Code\n```\nstatic int fast_io = []() \n{ \n std::ios::sync_with_stdio(false); \n cin.tie(nullptr); \n cout.tie(nullptr); \n return 0; \n}();\n\n#ifdef LOCAL\n freopen("input.txt", "r" , stdin);\n freopen("output.txt", "w", stdout);\n#endif\n\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) \n {\n //we will use i to iterate over the nums1\n \n int ans = 0;\n\n int i = 0;\n while(i < (nums1.size()))\n {\n int j = fun(nums1[i],i,nums2.size()-1,nums2);\n\n if(j != -1)\n {\n ans = max(ans,j-i);\n }\n\n i++;\n } \n return ans;\n }\n int fun(int &nums1,int start,int end,vector<int>&nums2)\n {\n int start_ = start;\n int end_ = end;\n\n int pos = -1;\n while(start <= end)\n {\n int mid = (start + ((end - start)/2));\n\n //either the nums[mid] could be smaller then the nums1\n //either the nums[mid] could be greater then the nums1\n\n if(nums2[mid] < nums1)\n {\n end = mid-1;\n }\n else if(nums2[mid] >= nums1)\n {\n pos = max(pos,mid);\n start = mid+1;\n }\n } \n if(start >= start_ and start <= end_ and nums2[start] >= nums1)\n pos = max(pos,start);\n\n if(end >= start_ and end <= end_ and nums2[end] >= nums1)\n pos = max(pos,end);\n\n return pos;\n }\n};\n```
2
1
['Array', 'Two Pointers', 'Binary Search', 'Greedy', 'C++']
0
maximum-distance-between-a-pair-of-values
C++ easy solution O(m*logn)
c-easy-solution-omlogn-by-hemant_1451-pukm
\n# Algorithm\nInitialize answer = 0.\nIterate over one array (let\'s say nums1), for each number nums1[i], we use binary search to find the insertion position
Hemant_1451
NORMAL
2023-01-11T06:57:39.143840+00:00
2023-01-11T06:57:39.143890+00:00
883
false
\n# Algorithm\nInitialize answer = 0.\nIterate over one array (let\'s say nums1), for each number nums1[i], we use binary search to find the insertion position j of nums1[i] to nums2.\nIf j < i, we move on to the next i by repeating the step 2.\nOtherwise, we find one valid pair, update answer as answer = max(answer, j - i).\n# Code\n```\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int m = int(nums1.size()), n = int(nums2.size());\n int ans = 0;\n for (int i = 0; i < m; ++i) {\n int k = nums2.rend() - lower_bound(nums2.rbegin(), nums2.rend(), nums1[i]);\n if (k > 0) {\n ans = max(ans, k - i - 1);\n }\n }\n return ans;\n }\n};\n```
2
0
['C++']
0
maximum-distance-between-a-pair-of-values
Easy C++ Solution || Binary Search || O(nlogn) ✔
easy-c-solution-binary-search-onlogn-by-l7kes
\n## Code\n\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int dis=0;\n for (int i=0; i<nums1.size();
akanksha984
NORMAL
2022-12-17T22:05:45.202791+00:00
2022-12-17T22:05:45.202813+00:00
608
false
\n## Code\n```\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int dis=0;\n for (int i=0; i<nums1.size(); i++){\n int low= i+1; int high= nums2.size()-1;// int midi=i;\n while (low<=high){\n int mid= low+ (high-low)/2;\n if (nums1[i]>nums2[mid]){\n high= mid-1;\n }\n else {low= mid+1;}\n }\n dis= max(dis,low-1-i);\n }\n return dis;\n }\n};\n```\n### Complexity\n- Time complexity: $$O(nlogm),$$\n *n is the size of nums1\n m is the size of nums2*\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:$$ O(1)$$\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n
2
0
['C++']
0
maximum-distance-between-a-pair-of-values
Binary Search
binary-search-by-segnides-ahg1
Intuition\nWe just have to iterate over the first list and find the index of largest number in the second list using binary search.\n\n# Complexity\nm = len(num
segnides
NORMAL
2022-12-16T07:58:38.672077+00:00
2022-12-16T07:58:38.672109+00:00
209
false
# Intuition\nWe just have to iterate over the first list and find the index of largest number in the second list using binary search.\n\n# Complexity\nm = len(nums1)\nn = len(nums2)\n- Time complexity:\nO(m*log(n))\n\n- Space complexity:\nO(1)\n\n# Code\n```\nclass Solution:\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n max_d = 0\n l1, l2 = len(nums1), len(nums2)\n for i in range(l1):\n left, right = i, l2 - 1\n while left <= right:\n index = (left + right) // 2\n if nums2[index] >= nums1[i]:\n left = index + 1\n else:\n right = index - 1\n max_d = max(max_d, right - i)\n return max_d\n```
2
0
['Binary Search', 'Python3']
0
maximum-distance-between-a-pair-of-values
Binary Search Easy Solution || C++ || Beginner Friendly
binary-search-easy-solution-c-beginner-f-pv8u
\n# Time Complexity\nO(NLogM)\n\n# Code\n\nclass Solution {\n int helper(vector<int>&nums,int tar,int i){\n int st=i,en=nums.size()-1;\n int ma
Maxx_1007
NORMAL
2022-11-22T19:01:23.249275+00:00
2022-11-22T19:01:23.249325+00:00
448
false
\n# Time Complexity\nO(NLogM)\n\n# Code\n```\nclass Solution {\n int helper(vector<int>&nums,int tar,int i){\n int st=i,en=nums.size()-1;\n int maxi=INT_MIN;\n while(st<=en){\n int mid=st+(en-st)/2;\n if(nums[mid]>=tar){\n maxi=max(maxi,mid-i);\n st=mid+1;\n }\n else{\n en=mid-1;\n }\n }\n return maxi;\n }\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int maxi=INT_MIN;\n for(int i=0;i<nums1.size();i++){\n maxi=max(maxi,helper(nums2,nums1[i],i));\n }\n return maxi==INT_MIN?0:maxi;\n }\n};\n```
2
0
['Array', 'Two Pointers', 'Binary Search', 'C++']
0
maximum-distance-between-a-pair-of-values
java | Brute Force | Two Pointers | Binary Search
java-brute-force-two-pointers-binary-sea-imjz
\nclass Solution {\n public int maxDistance(int[] nums1, int[] nums2) {\n \n //BinarySearch : TC=O(mlogn), SC=O(1)\n int d = 0;\n
gobindmishra23
NORMAL
2022-10-18T09:35:18.670129+00:00
2022-10-18T09:35:18.670167+00:00
87
false
```\nclass Solution {\n public int maxDistance(int[] nums1, int[] nums2) {\n \n //BinarySearch : TC=O(mlogn), SC=O(1)\n int d = 0;\n for(int i=0;i<nums1.length;i++){\n int start = i;\n int end = nums2.length-1;\n while(start <= end){\n int mid = start + (end-start)/2;\n if(nums1[i] <= nums2[mid]){\n d = Math.max(d,mid-i);\n start = mid+1;\n } else {\n end = mid-1;\n }\n }\n }\n return d;\n \n /*\n //Two Pointers Approach : TC=O(min(m,n)), SC=O(1)\n int i=0,j=0,d=0;\n while(i<nums1.length && j<nums2.length){\n if(i<=j && nums1[i]<=nums2[j]){\n d=Math.max(d,j-i);\n j++;\n \n } else if(nums1[i] > nums2[j]){\n i++;\n }else{\n j++;\n }\n }\n return d;\n */\n \n /*\n //BruteForce Approach : TC=O(m*n) , SC=O(1) -> TLE\n int d = 0;\n for(int i=0;i<nums1.length;i++){\n for(int j=0;j<nums2.length;j++){\n if(i<=j && nums1[i]<=nums2[j]){\n d = Math.max(d,j-i);\n }\n }\n }\n return d;\n */\n }\n}\n```
2
0
['Two Pointers', 'Binary Tree', 'Java']
1
maximum-distance-between-a-pair-of-values
Two pointers are 98% faster
two-pointers-are-98-faster-by-berryfur-h7he
\nclass Solution:\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n i = maxdist = 0\n n = len(nums1)\n for j, number
BerryFur
NORMAL
2022-10-14T05:14:05.787451+00:00
2022-10-14T05:14:05.787493+00:00
415
false
```\nclass Solution:\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n i = maxdist = 0\n n = len(nums1)\n for j, number2 in enumerate(nums2):\n while i < n and nums1[i] > number2:\n i += 1\n if i == n:\n return maxdist\n maxdist = max(maxdist, j - i)\n return maxdist\n```\n\n![image](https://assets.leetcode.com/users/images/2c3930ab-06ac-4522-bf25-d24f5afa0d73_1665724206.5680892.png)\n
2
0
['Two Pointers', 'Python']
0
maximum-distance-between-a-pair-of-values
Java Solution || Easy understanding ✔
java-solution-easy-understanding-by-mahe-xxno
class Solution {\n public int maxDistance(int[] nums1, int[] nums2) {\n \n int i = 0, j = 0, ans = 0;\n while(i < nums1.length && j < nu
mahesh_1729
NORMAL
2022-09-07T17:46:54.834468+00:00
2022-09-07T17:46:54.834510+00:00
309
false
class Solution {\n public int maxDistance(int[] nums1, int[] nums2) {\n \n int i = 0, j = 0, ans = 0;\n while(i < nums1.length && j < nums2.length){\n if(nums1[i] > nums2[j])\n i++;\n else{\n ans = Math.max(ans, j-i);\n j++;\n }\n }\n return ans;\n }\n}
2
0
['Binary Tree', 'Java']
0
maximum-distance-between-a-pair-of-values
Java solution | Brute force | Binary Search Solution | 2 approaches
java-solution-brute-force-binary-search-9duwo
Brute force approach: Gives TLE\n\n\npublic int maxDistance(int[] nums1, int[] nums2) {\n int maxDistance = 0;\n int len1 = nums1.length;\n
sankalpjadhav
NORMAL
2022-08-28T03:59:49.918466+00:00
2022-08-28T03:59:49.918495+00:00
244
false
Brute force approach: Gives TLE\n\n```\npublic int maxDistance(int[] nums1, int[] nums2) {\n int maxDistance = 0;\n int len1 = nums1.length;\n int len2 = nums2.length;\n for(int i=0;i<len1;i++){\n for(int j=i;j<len2;j++){\n if(nums1[i]<=nums2[j]){\n maxDistance = Math.max(maxDistance, j-i);\n }\n }\n }\n return maxDistance;\n }\n```\n\nBinary search solution:\n\n```\npublic int maxDistance(int[] nums1, int[] nums2) {\n int maxDistance = 0;\n int len1 = nums1.length;\n int len2 = nums2.length;\n for(int i=0;i<len1;i++){\n int low = i;\n int high = len2-1;\n while(low<=high){\n int mid = low+(high-low)/2;\n if(nums1[i] <= nums2[mid]){\n maxDistance = Math.max(maxDistance, mid-i);\n low = mid+1;\n }\n else{\n high = mid-1;\n }\n }\n }\n return maxDistance;\n }\n```\n\n
2
0
['Binary Tree', 'Java']
2
maximum-distance-between-a-pair-of-values
100% - 0ms - Dcode
100-0ms-dcode-by-devampanchasara-0zom
\nclass Solution {\n public int maxDistance(int[] nums1, int[] nums2) {\n int i=0,j=0;\n int n=nums1.length;\n int m=nums2.length;\n
DevamPanchasara
NORMAL
2022-07-27T21:02:34.120235+00:00
2022-07-27T21:02:34.120279+00:00
68
false
```\nclass Solution {\n public int maxDistance(int[] nums1, int[] nums2) {\n int i=0,j=0;\n int n=nums1.length;\n int m=nums2.length;\n int max=0;\n while(i<n && j<m){\n if(nums1[i]>nums2[j])\n i++;\n else{\n max=Math.max(max,j-i); \n j++;\n }\n }\n return max;\n }\n}\n```
2
0
['Java']
0
maximum-distance-between-a-pair-of-values
[C++] Binary Search nlogn
c-binary-search-nlogn-by-sandeep8381-9iu6
\nclass Solution {\npublic:\n \n int binarySearch(vector<int>& nums1, int val){\n int l = 0, h = nums1.size()-1;\n int ind = 1e9;\n w
sandeep8381
NORMAL
2022-07-12T07:45:07.009483+00:00
2022-07-12T07:45:07.009532+00:00
67
false
```\nclass Solution {\npublic:\n \n int binarySearch(vector<int>& nums1, int val){\n int l = 0, h = nums1.size()-1;\n int ind = 1e9;\n while(l<=h){\n int mid = l + (h-l)/2;\n if(nums1[mid] > val){\n l = mid+1;\n }else{\n ind = mid;\n h = mid-1;\n }\n }\n return ind;\n }\n \n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int n = nums1.size();\n int m = nums2.size();\n int res = INT_MIN;\n for(int j=m-1; j>=0; j--){\n res = max(res,j - binarySearch(nums1,nums2[j]));\n }\n return res<0 ? 0:res;\n }\n};\n```
2
0
['C', 'Binary Tree']
0
maximum-distance-between-a-pair-of-values
Simple Binary Search Python Solution
simple-binary-search-python-solution-by-hd3ya
Approach: for each i in nums1, let\'s find the last j in nums2 (using binary search with initial limits left=i and right=len(nums2)) that satisfies nums1[i] <=
nordant
NORMAL
2022-06-15T07:14:36.009623+00:00
2022-06-15T07:14:36.009661+00:00
105
false
Approach: for each **i** in **nums1**, let\'s find the last **j** in **nums2** (using binary search with initial limits **left=i** and **right=len(nums2)**) that satisfies **nums1[i] <= nums2[j]** and then **count the distance (j-i)**. Return the maximum distance.\n\n```\nclass Solution:\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n max_dist = 0\n for idx, i in enumerate(nums1):\n l=idx\n r=len(nums2)\n while r-l > 1:\n mid = (l+r)//2\n if nums2[mid] < i:\n r = mid\n else:\n l = mid\n if l-idx > max_dist:\n max_dist = l-idx\n return max_dist\n```\n\n**Thanks! Please, upvote if you find this solution useful.**
2
0
['Binary Tree', 'Python']
0
maximum-distance-between-a-pair-of-values
Simple java solution
simple-java-solution-by-siddhant_1602-o7o5
```\nclass Solution {\n public int maxDistance(int[] n1, int[] n2) {\n int m=n1.length,n=n2.length,s=0;\n for(int i=0,j=0;j<n&&in2[j])\n
Siddhant_1602
NORMAL
2022-06-14T18:15:41.786595+00:00
2022-06-14T18:15:41.786641+00:00
50
false
```\nclass Solution {\n public int maxDistance(int[] n1, int[] n2) {\n int m=n1.length,n=n2.length,s=0;\n for(int i=0,j=0;j<n&&i<m;)\n {\n if(n1[i]>n2[j])\n i++;\n else\n s=Math.max(s,j++-i);\n }\n return s;\n }\n}
2
0
['Two Pointers', 'Java']
0
maximum-distance-between-a-pair-of-values
Python | Binary Search
python-binary-search-by-sauravintheocean-066f
Approach:\n1. For each element in nums1, we perform binary search on nums2 to find the index of the right-most element which is greater than or equal to the cur
sauravintheocean
NORMAL
2022-06-09T14:22:18.028734+00:00
2022-06-09T14:47:45.849126+00:00
104
false
Approach:\n1. For each element in nums1, we perform binary search on nums2 to find the index of the right-most element which is greater than or equal to the current element in nums1.\n2. Since nums2 may contain duplicate elements, to move to the right-most element we need to make mid as right-biased by using mid = l + (r-l+1)/2\n3. We have three cases in binary search:\n* nums2[mid] < target: r = mid - 1\n* nums2[mid] > target: l = mid + 1\n* nums2[mid] = target: l = mid\nAfter Combining case 2 and case 3, we can say that if nums2[mid] >= target: l = mid\n4. Loop terminates when l and r become equal \n \n```\nclass Solution(object):\n def maxDistance(self, nums1, nums2):\n """\n :type nums1: List[int]\n :type nums2: List[int]\n :rtype: int\n """\n def binarySearch(start, target):\n l, r = start, len(nums2)-1\n while l < r:\n mid = l + (r-l+1)/2\n if nums2[mid] < target:\n r = mid - 1\n else:\n l = mid\n \n if nums2[r] >= target:\n return r\n else:\n return -1\n maxDistance = 0 \n for i in range(len(nums1)):\n j = binarySearch(i, nums1[i])\n if j != -1:\n maxDistance = max(maxDistance, j-i)\n return maxDistance \n```
2
0
['Binary Tree', 'Python']
0
maximum-distance-between-a-pair-of-values
Two Pointer | C++ | O(n)
two-pointer-c-on-by-salamnamaste-gizi
\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int ans = 0;\n for(int i = 0, j = 0; i < nums1.size()
salamnamaste
NORMAL
2022-05-30T01:13:48.079899+00:00
2022-05-30T01:13:48.079960+00:00
48
false
```\nclass Solution {\npublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int ans = 0;\n for(int i = 0, j = 0; i < nums1.size() && j < nums2.size(); i++) {\n while(j < nums2.size() && nums1[i] <= nums2[j]) j++;\n ans = max(ans, j-i-1);\n }\n return ans;\n }\n};\n```
2
0
[]
0
maximum-distance-between-a-pair-of-values
JavaScript Solution (Easy)
javascript-solution-easy-by-oneduck-up6x
\nvar maxDistance = function(nums1, nums2) {\n if(nums1[nums1.length - 1] > nums2[0]){\n return 0\n }\n \n let i = 0, j = 0, maxDistance = 0\
oneduck
NORMAL
2022-05-21T01:43:43.685602+00:00
2022-05-21T01:43:43.685633+00:00
75
false
```\nvar maxDistance = function(nums1, nums2) {\n if(nums1[nums1.length - 1] > nums2[0]){\n return 0\n }\n \n let i = 0, j = 0, maxDistance = 0\n \n while(i < nums1.length){\n if(j < nums2.length && nums1[i] <= nums2[j]){\n maxDistance = Math.max(maxDistance, j - i)\n j++\n }else{\n i++\n j++\n }\n }\n \n return maxDistance\n};\n```
2
0
[]
0
maximum-distance-between-a-pair-of-values
C++ solution
c-solution-by-peet_code-7bkx
\tclass Solution {\n\tpublic:\n int maxDistance(vector& nums1, vector& nums2) {\n int i = 0, j = 0, ans = 0;\n \n while(i<nums1.size() &
Peet_code_
NORMAL
2022-04-18T13:25:06.588494+00:00
2022-04-18T13:25:06.588546+00:00
84
false
\tclass Solution {\n\tpublic:\n int maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int i = 0, j = 0, ans = 0;\n \n while(i<nums1.size() && j < nums2.size()){\n if(nums1[i] > nums2[j])\n i++;\n else\n ans = max(ans, j++ - i);\n }\n return ans;\n }\n\t};\n\n
2
0
['C', 'C++']
0
maximum-distance-between-a-pair-of-values
Python || Two Pointers
python-two-pointers-by-nashvenn-v3aw
Please upvote if it helps. Thank you!\n\nclass Solution:\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n i, j, max_dist = 0, 0,
nashvenn
NORMAL
2022-04-11T13:33:08.283147+00:00
2022-04-11T13:33:08.283190+00:00
68
false
**Please upvote if it helps. Thank you!**\n```\nclass Solution:\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n i, j, max_dist = 0, 0, 0\n for j in range(len(nums2)):\n if nums1[i] > nums2[j]:\n i += 1\n if i == len(nums1):\n break\n else:\n max_dist = max(max_dist, j - i)\n return max_dist\n```
2
0
['Two Pointers', 'Python']
0
maximum-distance-between-a-pair-of-values
Java solution | O(M + N)
java-solution-om-n-by-chinghsuanwei0206-q7av
\n public int maxDistance(int[] nums1, int[] nums2) {\n \n int i=0;\n int j=0;\n\n int diff = 0;\n while(i < nums1.length
chinghsuanwei0206
NORMAL
2022-01-27T14:47:07.840108+00:00
2022-01-27T14:47:14.665147+00:00
145
false
\n public int maxDistance(int[] nums1, int[] nums2) {\n \n int i=0;\n int j=0;\n\n int diff = 0;\n while(i < nums1.length && j < nums2.length)\n {\n \n if(nums2[j] >= nums1[i])\n {\n diff = Math.max(diff, j-i);\n j++;\n }\n else\n {\n i++;\n }\n \n }\n \n return diff;\n }
2
0
['Java']
0
maximum-distance-between-a-pair-of-values
two pointer js
two-pointer-js-by-cauld-j31h
\nvar maxDistance = function(nums1, nums2) {\n \n let maxDistance = Math.max();\n \n let ptr1 = 0;\n let ptr2 = 0;\n \n \n while
cauld
NORMAL
2021-09-17T19:20:56.764050+00:00
2021-09-17T19:20:56.764091+00:00
139
false
```\nvar maxDistance = function(nums1, nums2) {\n \n let maxDistance = Math.max();\n \n let ptr1 = 0;\n let ptr2 = 0;\n \n \n while(ptr2 < nums2.length){\n\n if(nums1[ptr1] <= nums2[ptr2]){\n maxDistance = Math.max(maxDistance, ptr2 - ptr1);\n ptr2++;\n } else {\n ptr1++;\n }\n \n while(ptr1 > ptr2){\n ptr2++;\n } \n \n }\n\n return maxDistance === Math.max() ? 0 : maxDistance;\n \n};\n```
2
0
['JavaScript']
0
maximum-distance-between-a-pair-of-values
c# : Easy Solution
c-easy-solution-by-rahul89798-4vy1
Solution 1:\n\n\n\npublic class Solution {\n public int MaxDistance(int[] nums1, int[] nums2) {\n int ans = 0, i = nums1.Length - 1, j = nums2.Length - 1;\n
rahul89798
NORMAL
2021-08-16T15:16:57.696847+00:00
2023-04-01T15:24:09.826496+00:00
70
false
**Solution 1:**\n\n```\n\npublic class Solution {\n public int MaxDistance(int[] nums1, int[] nums2) {\n int ans = 0, i = nums1.Length - 1, j = nums2.Length - 1;\n\n while(i >= 0 && j >= 0) {\n if(i > j) {\n i--;\n continue;\n }\n\n if(nums1[i] <= nums2[j]) {\n ans = Math.Max(ans, Math.Abs(j - i));\n i--;\n }\n else\n j--;\n }\n\n return ans;\n }\n}\n```\n\n**Solution 2:**\n\n```\npublic class Solution {\n public int MaxDistance(int[] nums1, int[] nums2) {\n int ans = 0, low = 0, high = nums2.Length;\n while(low <= high) {\n var mid = low + (high - low) / 2;\n if(IsPossible(nums1, nums2, mid)) {\n ans = Math.Max(ans, mid);\n low = mid + 1;\n }\n else\n high = mid - 1;\n }\n\n return ans;\n }\n\n private bool IsPossible(int[] nums1, int[] nums2, int dist) {\n for(int i = 0, j = dist; i < nums1.Length && j < nums2.Length; i++, j++) {\n if(nums1[i] <= nums2[j])\n return true;\n }\n\n return false;\n }\n}\n```
2
0
['Two Pointers', 'Binary Search']
0
maximum-distance-between-a-pair-of-values
Bisect whenever you can, 99% speed
bisect-whenever-you-can-99-speed-by-evge-hg1s
Runtime: 1048 ms, faster than 99.18% of Python3 online submissions for Maximum Distance Between a Pair of Values.\nMemory Usage: 31.8 MB, less than 89.90% of Py
evgenysh
NORMAL
2021-07-23T16:40:52.795865+00:00
2021-07-23T16:43:56.018824+00:00
117
false
Runtime: 1048 ms, faster than 99.18% of Python3 online submissions for Maximum Distance Between a Pair of Values.\nMemory Usage: 31.8 MB, less than 89.90% of Python3 online submissions for Maximum Distance Between a Pair of Values.\n```\nfrom bisect import bisect_left\nclass Solution:\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n nums2.reverse()\n max_dist = 0\n len1 = len(nums2) - 1\n for i, n in enumerate(nums1):\n max_dist = max(max_dist, len1 - bisect_left(nums2, n) - i)\n if len1 - i <= max_dist:\n break\n return max_dist\n```
2
0
['Python', 'Python3']
0
maximum-distance-between-a-pair-of-values
Clear Explanation of O(nlogn) algorithm
clear-explanation-of-onlogn-algorithm-by-m8q6
Let\'s start selecting j index from the end of nums2 array, because our solution must satisfy the condition i < j. So it is more intuitive to select as large as
datoqobu
NORMAL
2021-05-30T09:12:24.321955+00:00
2021-07-01T14:21:38.228945+00:00
255
false
Let\'s start selecting `j` index from the end of `nums2` array, because our solution must satisfy the condition `i < j`. So it is more intuitive to select as large as possible `j` index and do the logic after that. As for `i` index, we must find the minimum `i` in `nums1` array, such that `nums1[i] <= nums2[j]`.\nNotice that both array are non-increasing (`arr` is non-increasing if `arr[i-1] >= arr[i]` for every `1 <= i < arr.length`), so they are decrease ordered. Thus we can use **binary search algorithm** to find `i` in `nums1` array.\n\nWhen we find appropriate `i` in `nums1` array, we must consider the difference `(j - i)` and compare it to previous difference value to select **max** between them. There is exist legitimate question: why we don\'t break finding process at this point? Why do we consider other pairs of indices `(i, j)`? Because it may happen that `nums2[j-k]` (where `k` is `0 <= k < j <= nums2.length`) would be too greater than `nums[j]`. So `i` index would be near of `0` index in `nums1` array. The example is:\n`nums1 = [20, 10, 6, 4, 2]` `nums2 = [80, 70, 60, 50, 5]` so when `j = 4 nums2[4] = 5` and `i = 3 nums1[3] = 4`. So `(j - i) = 4 - 3 = 1` but `j = 3 nums2[3] = 50` and `i = 0 nums1[0] = 30, (j - i) = 3`. Thus we would have found more valid pair `(j, i)` and its difference is `3`.\n\nProcess that is described above is main part of solution, but let\'s consider **edge cases**.\n 1. `elem` from `nums2` array is the smallest one in `nums1` array. So there is not exist `i` in `nums1` array. Then the difference `(j - i)` doesn\'t exist also.\n 2. `elem` from `nums2` array is the greatest one in `nums1` array, then `i` index must be `0`.\n 3. `nums1` and `nums2` arrays lengthes **are not equal** each other. Our algorithm must consider this edge case.\n\nSo there is java code:\n\n```java\npublic int maxDistance(int[] nums1, int[] nums2) {\n int res = 0;\n int start = 0, end = nums1.length - 1;\n for (int j = nums2.length - 1; j >= 0; j--) {\n int i = findAppropIndex(nums1, start, end, nums2[j]);\n\n if (i > end) continue;\n\n int diff = j - i;\n res = Math.max(res, diff);\n end = Math.min(j, i);\n }\n return res;\n }\n\n private int findAppropIndex(int[] arr, int start, int end, int elem) {\n if (elem < arr[end]) { // arr: [10, 9, 8, 7, 7] elem: 5\n return end + 1;\n }\n int low = start, high = end;\n while (low < high) {\n int mid = low + (high - low) / 2;\n if (arr[mid] > elem) {\n low = mid + 1;\n } else {\n high = mid;\n }\n }\n return high;\n }\n```\n\n***Notice:***\n\n**Binary search:** In general, it is better to compute mid as `low + (high - low) / 2` than `(low + high) / 2`, because `(low + high)` may be bigger than integer type capacity.\n\n**end = Math.min(j, i):** This is for better performance. We should not start to find `i` index always in the same range from `nums1` array. The range should be from `0` to `Math.min(j, i)`. We must select minimum value from `(j, i)` and do not assign `j` or `i` directly to the `end` variable (like: `end = j` or `end = i`). Because if we write `end = i`, what happens if `nums2.length` is smaller than `nums1.length`? Index `j` may be smaller than index `i`, so if `j < i` we could not have a valid pair even than `nums1[i] <= nums2[j]`. Second condition also must be satisfied: i <= j. And what happens if `end = j`? It may be **ArrayIndexOutOfBoundsException** when we select `arr[mid]` in binary search function. Because `mid = low + (high - low) / 2`. So if `nums2.length > nums1.length` mid index may be greater than `nums1.length` also. Thus we need minimum value from `j` and `i`.\n\nTime complexity is `O(nlogm)` where `m` is `nums1` array length and `n` is `nums2` array length. Ordering of `nums2` array is` O(n)` and in each step we do `O(logm)` operation for binary search in `nums1` array.\n\nI would love to have some sort of feedback from you. If you share me what can be improved in the article and what problems do you see currently, I\'ll correct them.\nThanks for reading.
2
1
['Binary Tree', 'Java']
0
maximum-distance-between-a-pair-of-values
[Python] Sliding Window - 5 Lines
python-sliding-window-5-lines-by-jump2fl-7kup
Iterate on input array \'nums1\'.\nStart with a size-1 shift on \'nums2\'\n\nTime O(n + m)\nSpace O(1)\n\n\nclass Solution:\n def maxDistance(self, nums1: Li
Jump2Fly
NORMAL
2021-05-10T10:23:05.414861+00:00
2021-05-10T10:27:16.222838+00:00
150
false
Iterate on input array \'nums1\'.\nStart with a size-1 shift on \'nums2\'\n\nTime O(n + m)\nSpace O(1)\n\n```\nclass Solution:\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n shift = 1\n for i, num1 in enumerate(nums1):\n while i + shift < len(nums2) and num1 <= nums2[i + shift]:\n shift += 1\n return shift - 1\n```
2
0
[]
0
maximum-distance-between-a-pair-of-values
C++ 2 Pointers
c-2-pointers-by-aryanndhir-3ltl
\nint maxDistance(vector<int>& nums1, vector<int>& nums2) {\n \n int i = 0, j = 0;\n int n = nums1.size(), m = nums2.size(), maxlen = 0;\n
aryanndhir
NORMAL
2021-05-09T15:11:51.711745+00:00
2021-05-09T15:11:51.711790+00:00
54
false
```\nint maxDistance(vector<int>& nums1, vector<int>& nums2) {\n \n int i = 0, j = 0;\n int n = nums1.size(), m = nums2.size(), maxlen = 0;\n \n while(i < n && j < m){\n \n while(j < m && nums1[i] <= nums2[j])\n j++;\n\n maxlen = max(maxlen, j-i-1); \n \n while(i < n && j < m && nums1[i] > nums2[j])\n i++; \n }\n \n return maxlen;\n }\n}\n```
2
0
[]
0
maximum-distance-between-a-pair-of-values
[Python/C++] 2 Pointers - O(n)
pythonc-2-pointers-on-by-slough_10-98hg
Python3 \n\nclass Solution(object):\n\tdef maxDistance(self, nums1, nums2):\n\t\tresult = 0\n\t\ti, j = 0, 0\n\t\tn1,n2 = len(nums1), len(nums2)\n\t\t\n\t\twhil
slough_10
NORMAL
2021-05-09T04:35:28.630822+00:00
2021-05-09T04:35:52.747370+00:00
50
false
1. Python3 \n```\nclass Solution(object):\n\tdef maxDistance(self, nums1, nums2):\n\t\tresult = 0\n\t\ti, j = 0, 0\n\t\tn1,n2 = len(nums1), len(nums2)\n\t\t\n\t\twhile i < n1 and j < n2:\n\t\t\tif nums1[i] <= nums2[j]:\n\t\t\t\tresult = max(result, j-i)\n\t\t\t\tj += 1\n\t\t\telse:\n\t\t\t\ti += 1\n\t\t\t\tj += 1\n\t\treturn result\n```\n\n2. C++\n```\nint maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int i = 0, j = 0, result = 0, n1 = nums1.size(), n2 = nums2.size();\n while (i < n1 && j < n2) {\n if (nums1[i] <= nums2[j]){\n result = max(result, j - i);\n\t\t\t\t j++;\n\t\t\t\t }\n else{\n\t\t\t\ti++;\n\t\t\t\tj++;\n\t\t\t} \n }\n return result;\n }\n```
2
0
[]
0
maximum-distance-between-a-pair-of-values
Two pointers O(N)
two-pointers-on-by-leetc1234-xf1d
class Solution {\n public int maxDistance(int[] nums1, int[] nums2) {\n \n int left = 0, right = 0, maxDist = 0;\n int len1 = nums1.length,
leetc1234
NORMAL
2021-05-09T04:08:51.426524+00:00
2021-05-10T19:57:58.174657+00:00
72
false
class Solution {\n public int maxDistance(int[] nums1, int[] nums2) {\n \n int left = 0, right = 0, maxDist = 0;\n int len1 = nums1.length, len2 = nums2.length;\n\n while(left < len1 && right < len2){\n \n if(nums1[left] > nums2[right]){\n left++;\n }else{\n maxDist = Math.max(maxDist, right - left);\n right++;\n }\n\n }\n\n return maxDist;\n \n }\n}\n\n\n
2
2
['Java']
0
maximum-distance-between-a-pair-of-values
[Python3] sliding window
python3-sliding-window-by-ye15-toon
\n\nclass Solution:\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n ans = ii = 0 \n for i, x in enumerate(nums2): \n
ye15
NORMAL
2021-05-09T04:07:40.777825+00:00
2021-05-09T04:07:40.777858+00:00
134
false
\n```\nclass Solution:\n def maxDistance(self, nums1: List[int], nums2: List[int]) -> int:\n ans = ii = 0 \n for i, x in enumerate(nums2): \n while ii <= i and ii < len(nums1) and nums1[ii] > nums2[i]: ii += 1\n if ii < len(nums1) and nums1[ii] <= nums2[i]: ans = max(ans, i - ii)\n return ans \n```
2
0
['Python3']
0
maximum-distance-between-a-pair-of-values
python binary search
python-binary-search-by-cslzy-4pl9
\nclass Solution(object):\n def maxDistance(self, nums1, nums2):\n """\n :type nums1: List[int]\n :type nums2: List[int]\n :rtype
cslzy
NORMAL
2021-05-09T04:03:25.312081+00:00
2021-05-09T04:03:25.312130+00:00
149
false
```\nclass Solution(object):\n def maxDistance(self, nums1, nums2):\n """\n :type nums1: List[int]\n :type nums2: List[int]\n :rtype: int\n """\n res = 0\n n1 = len(nums1)\n n2 = len(nums2)\n \n \n for i in range(min(n1, n2)):\n if nums1[i] > nums2[i]:\n continue\n left = i\n right = n2 - 1\n \n iv = nums1[i]\n \n while left <= right:\n mid = (left + right) / 2\n if nums2[mid] >= iv:\n left = mid + 1\n elif nums2[mid] < iv:\n right = mid - 1\n \n res = max(res, left - i - 1)\n \n return res\n \n```
2
2
[]
0
maximum-distance-between-a-pair-of-values
C++ Easy and simple || 2 Pointer || O(N+M) time
c-easy-and-simple-2-pointer-onm-time-by-jxe3x
\nint maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int n = nums1.size(), m = nums2.size(), i = 0, j = 0, total = 0;\n\n while (i < n && j < m)
faltu_admi
NORMAL
2021-05-09T04:01:59.122627+00:00
2021-05-09T04:03:49.256184+00:00
147
false
```\nint maxDistance(vector<int>& nums1, vector<int>& nums2) {\n int n = nums1.size(), m = nums2.size(), i = 0, j = 0, total = 0;\n\n while (i < n && j < m) {\n if (nums1[i] <= nums2[j]) {\n total = max(total, j - i);\n j++;\n } else if (i < j) {\n i++;\n } else {\n j++;\n }\n }\n return total;\n}\n```
2
0
[]
0
maximum-distance-between-a-pair-of-values
Java Binary Search Solution and two pointer solution
java-binary-search-solution-and-two-poin-vny6
O(nlogn) Solution\n\n\nclass Solution {\n public int maxDistance(int[] nums1, int[] nums2) {\n int res = 0;\n for(int i = nums2.length-1; i >=
ayush2332
NORMAL
2021-05-09T04:01:14.788189+00:00
2021-05-09T04:03:58.073554+00:00
178
false
**O(nlogn) Solution**\n\n```\nclass Solution {\n public int maxDistance(int[] nums1, int[] nums2) {\n int res = 0;\n for(int i = nums2.length-1; i >= 0; i--) {\n int start = 0, end = Math.min(nums1.length-1, i-1);\n while(start <= end) {\n int mid = start + (end - start) / 2;\n if(nums1[mid] <= nums2[i]) {\n res = Math.max(res, i - mid);\n end = mid - 1;\n }\n else {\n start = mid + 1;\n }\n \n }\n }\n return res;\n }\n}\n```\n\nO(n) Solution\n\n```\nclass Solution {\n public int maxDistance(int[] nums1, int[] nums2) {\n int i=0, j=0;\n int ans = 0;\n while(i<nums1.length && j<nums2.length){\n if(nums1[i]<=nums2[j]) ans = Math.max(j-i,ans);\n if(i==j || nums1[i]<=nums2[j]) j++;\n else i++;\n }\n return ans;\n }\n}\n```
2
0
[]
0