File size: 80,835 Bytes
42310ef
 
39d77a4
42310ef
 
 
 
 
 
 
00c0329
 
 
39d77a4
42310ef
 
 
39d77a4
42310ef
 
8b5437e
d2b2b68
 
8b5437e
d2b2b68
 
 
 
85a27e0
d2b2b68
 
 
 
7c978be
d2b2b68
 
 
 
 
 
42310ef
 
39d77a4
8b5437e
39d77a4
 
 
 
8b5437e
 
39d77a4
 
 
 
d2b2b68
 
 
167c85e
d2b2b68
 
 
 
 
 
 
 
 
 
 
00a9b48
d2b2b68
 
 
 
1047434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00a9b48
1047434
 
 
 
 
 
 
 
 
 
 
 
d2b2b68
 
1047434
d2b2b68
 
 
 
 
 
 
00a9b48
d2b2b68
 
 
 
1047434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00a9b48
1047434
 
 
 
 
 
 
 
 
 
 
 
d2b2b68
 
 
 
 
 
 
 
 
 
 
00a9b48
d2b2b68
 
 
 
1047434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2b2b68
 
 
00a9b48
d2b2b68
 
 
 
 
 
1047434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2b2b68
 
 
00a9b48
d2b2b68
 
 
 
 
 
1047434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2b2b68
 
 
 
 
 
 
 
 
1047434
d2b2b68
1047434
d2b2b68
 
 
 
1047434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2b2b68
 
 
1047434
d2b2b68
1047434
d2b2b68
 
 
 
1047434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2b2b68
 
 
 
 
 
 
 
 
00a9b48
d2b2b68
00a9b48
d2b2b68
 
 
 
00a9b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b8b9d5
00a9b48
 
 
 
 
 
ac5c83c
 
 
 
00a9b48
 
 
 
 
 
 
 
d2b2b68
 
00a9b48
d2b2b68
3b8b9d5
 
d2b2b68
3b8b9d5
d2b2b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cce3b2
d2b2b68
42310ef
b5afb04
 
 
 
 
443b117
b5afb04
 
00a9b48
b5afb04
00a9b48
b5afb04
 
 
 
1047434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5afb04
 
 
 
443b117
 
 
 
b5afb04
 
00a9b48
b5afb04
00a9b48
b5afb04
 
 
 
1047434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5afb04
 
 
 
 
 
 
 
 
 
 
00a9b48
b5afb04
 
 
 
1047434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00a9b48
1047434
 
 
 
 
 
 
 
 
 
 
 
b5afb04
 
 
 
 
f8da712
b5afb04
443b117
b5afb04
 
00a9b48
b5afb04
00a9b48
0d2b1a0
 
 
 
1047434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5afb04
d6f4836
 
 
 
 
 
 
 
00a9b48
d6f4836
3b8b9d5
d6f4836
 
 
 
1047434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6f4836
3b8b9d5
 
 
99e5ad0
 
 
 
 
 
3b8b9d5
99e5ad0
 
3b8b9d5
99e5ad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b8b9d5
 
51d25f9
99e5ad0
51d25f9
 
 
3b8b9d5
 
 
 
51d25f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b8b9d5
 
51d25f9
3b8b9d5
 
51d25f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b8b9d5
 
51d25f9
3b8b9d5
 
51d25f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b8b9d5
 
e9da4a7
51d25f9
e9da4a7
 
 
3b8b9d5
 
e9da4a7
3b8b9d5
e9da4a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b8b9d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
# OpenCV Zoo Benchmark

Benchmarking the speed of OpenCV DNN inferring different models in the zoo. Result of each model includes the time of its preprocessing, inference and postprocessing stages.

Data for benchmarking will be downloaded and loaded in [data](./data) based on given config.

## Preparation

1. Install `python >= 3.6`.
2. Install dependencies: `pip install -r requirements.txt`.
3. Download data for benchmarking.
    1. Download all data: `python download_data.py`
    2. Download one or more specified data: `python download_data.py face text`. Available names can be found in `download_data.py`.
    3. You can also download all data from https://pan.baidu.com/s/18sV8D4vXUb2xC9EG45k7bg (code: pvrw). Please place and extract data packages under [./data](./data).

## Benchmarking

**Linux**:

```shell
export PYTHONPATH=$PYTHONPATH:.. 

# Single config
python benchmark.py --cfg ./config/face_detection_yunet.yaml

# All configs
python benchmark.py --all

# All configs but only fp32 models (--fp32, --fp16, --int8 --int8bq are available for now)
python benchmark.py --all --fp32

# All configs but exclude some of them (fill with config name keywords, not sensitive to upper/lower case, seperate with colons)
python benchmark.py --all --cfg_exclude wechat
python benchmark.py --all --cfg_exclude wechat:crnn

# All configs but exclude some of the models (fill with exact model names, sensitive to upper/lower case, seperate with colons)
python benchmark.py --all --model_exclude license_plate_detection_lpd_yunet_2023mar_int8.onnx:human_segmentation_pphumanseg_2023mar_int8.onnx

# All configs with overwritten backend and target (run with --help to get available combinations)
python benchmark.py --all --cfg_overwrite_backend_target 1
```

**Windows**:
- CMD
    ```shell
    set PYTHONPATH=%PYTHONPATH%;..
    python benchmark.py --cfg ./config/face_detection_yunet.yaml
    ```

- PowerShell
    ```shell
    $env:PYTHONPATH=$env:PYTHONPATH+";.."
    python benchmark.py --cfg ./config/face_detection_yunet.yaml
    ```

## Detailed Results

Benchmark is done with latest opencv-python & opencv-contrib-python (current 4.10.0) on the following platforms. Some models are excluded because of support issues.

### Intel 12700K

Specs: [details](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)
- CPU: 8 Performance-cores, 4 Efficient-cores, 20 threads
  - Performance-core: 3.60 GHz base freq, turbo up to 4.90 GHz
  - Efficient-core: 2.70 GHz base freq, turbo up to 3.80 GHz

CPU: 

```
$ python3 benchmark.py --all
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
0.69       0.70       0.68       [160, 120]   YuNet with ['face_detection_yunet_2023mar.onnx']
0.79       0.80       0.68       [160, 120]   YuNet with ['face_detection_yunet_2023mar_int8.onnx']
5.09       5.13       4.96       [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
6.50       6.79       4.96       [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
1.79       1.76       1.75       [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
2.92       3.11       1.75       [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
2.40       2.43       2.37       [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
3.11       3.15       2.37       [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
5.59       5.56       5.28       [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
6.07       6.22       5.28       [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar_int8.onnx']
3.13       3.14       3.05       [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
3.04       3.02       2.92       [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
3.46       3.03       2.92       [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
3.84       3.77       2.92       [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
19.47      19.47      19.08      [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
21.52      21.86      19.08      [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
5.68       5.66       5.51       [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
7.41       7.36       5.51       [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar_int8.onnx']
41.02      40.99      40.86      [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
42.23      42.30      40.86      [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
78.77      79.76      77.16      [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
75.69      75.58      72.57      [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
4.01       3.84       3.79       [1280, 720]  VitTrack with ['object_tracking_vittrack_2023sep.onnx']
5.35       5.41       5.22       [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
6.73       6.85       5.22       [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
7.65       7.65       7.55       [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
15.56      15.57      15.10      [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
16.67      16.57      15.10      [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
6.33       6.63       6.14       [256, 256]   MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
1.19       1.30       1.07       [100, 100]   WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
18.76      19.59      18.48      [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
18.59      19.33      18.12      [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
22.05      18.60      18.12      [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
24.47      25.06      18.12      [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may_int8.onnx']
10.61      10.66      10.50      [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
11.03      11.23      10.50      [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
9.85       11.62      7.74       [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
10.02      9.71       7.74       [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
9.53       7.83       7.74       [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
9.68       9.21       7.74       [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
9.85       10.63      7.74       [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
9.63       9.28       7.74       [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

### Raspberry Pi 4B

Specs: [details](https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/)
- CPU: Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5 GHz.

CPU:

```
$ python3 benchmark.py --all
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
6.23       6.27       6.18       [160, 120]   YuNet with ['face_detection_yunet_2023mar.onnx']
6.68       6.73       6.18       [160, 120]   YuNet with ['face_detection_yunet_2023mar_int8.onnx']
68.82      69.06      68.45      [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
87.42      89.84      68.45      [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
27.81      27.77      27.67      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
35.71      36.67      27.67      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
42.58      42.41      42.25      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
46.49      46.95      42.25      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
71.35      71.62      70.78      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
73.81      74.23      70.78      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar_int8.onnx']
64.20      64.30      63.98      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
57.91      58.41      52.53      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
61.35      52.83      52.53      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
61.49      61.28      52.53      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
420.93     420.73     419.04     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
410.96     395.74     364.68     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
153.87     152.71     140.85     [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
157.86     145.90     140.85     [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar_int8.onnx']
214.59     211.95     210.98     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
215.09     238.39     208.18     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
1614.13    1639.80    1476.58    [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
1597.92    1599.12    1476.58    [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
48.55      46.87      41.75      [1280, 720]  VitTrack with ['object_tracking_vittrack_2023sep.onnx']
97.05      95.40      80.93      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
112.39     116.22     80.93      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
105.60     113.27     88.55      [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
478.89     498.05     444.14     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
442.56     477.87     369.59     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
116.15     120.13     106.81     [256, 256]   MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
5.90       5.90       5.81       [100, 100]   WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
325.02     325.88     303.55     [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
323.54     332.45     303.55     [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
372.32     328.56     303.55     [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
407.90     411.97     303.55     [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may_int8.onnx']
235.70     236.07     234.87     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
240.95     241.14     234.87     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
226.09     247.02     200.44     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
229.25     224.63     200.44     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
224.10     201.29     200.44     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
223.58     219.82     200.44     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
225.60     243.89     200.44     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
220.97     223.16     193.91     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

### Jetson Nano B01

Specs: [details](https://developer.nvidia.com/embedded/jetson-nano-developer-kit)
- CPU: Quad-core ARM A57 @ 1.43 GHz
- GPU: 128-core NVIDIA Maxwell

CPU:

```
$ python3 benchmark.py --all
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
5.62       5.54       5.52       [160, 120]   YuNet with ['face_detection_yunet_2023mar.onnx']
6.14       6.24       5.52       [160, 120]   YuNet with ['face_detection_yunet_2023mar_int8.onnx']
64.80      64.95      64.60      [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
78.31      79.85      64.60      [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
26.54      26.61      26.37      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
33.96      34.85      26.37      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
38.45      41.45      38.20      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
42.62      43.20      38.20      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
64.95      64.85      64.73      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
72.39      73.16      64.73      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar_int8.onnx']
65.72      65.98      65.59      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
56.66      57.56      49.10      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
62.09      49.27      49.10      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
62.17      62.02      49.10      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
346.78     348.06     345.53     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
371.11     373.54     345.53     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
134.36     134.33     133.45     [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
140.62     140.94     133.45     [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar_int8.onnx']
215.67     216.76     214.69     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
216.58     216.78     214.69     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
1209.12    1213.05    1201.68    [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
1240.02    1249.95    1201.68    [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
48.39      47.38      45.00      [1280, 720]  VitTrack with ['object_tracking_vittrack_2023sep.onnx']
75.30      75.25      74.96      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
83.83      84.99      74.96      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
87.65      87.59      87.37      [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
356.78     357.77     355.69     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
346.84     351.10     335.96     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
75.20      79.36      73.71      [256, 256]   MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
5.56       5.56       5.48       [100, 100]   WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
209.80     210.04     208.84     [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
209.60     212.74     208.49     [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
254.56     211.17     208.49     [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
286.57     296.56     208.49     [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may_int8.onnx']
252.60     252.48     252.21     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
259.28     261.38     252.21     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
245.18     266.94     220.49     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
247.72     244.25     220.49     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
241.63     221.43     219.06     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
243.46     238.98     219.06     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
246.87     256.05     219.06     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
243.37     238.90     219.06     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

GPU (CUDA-FP32):
<!-- config wechat is excluded due to its api does not support setting backend and target -->
```
$ python3 benchmark.py --all --fp32 --cfg_exclude wechat --cfg_overwrite_backend_target 1
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_CUDA
target=cv.dnn.DNN_TARGET_CUDA
mean       median     min        input size   model
10.99      10.71      9.64       [160, 120]   YuNet with ['face_detection_yunet_2023mar.onnx']
25.25      25.81      24.54      [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
13.97      14.01      13.72      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
24.47      24.36      23.69      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
67.25      67.99      64.90      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
28.96      28.92      28.85      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
28.61      28.45      27.92      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
98.80      100.11     94.57      [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
54.88      56.51      52.78      [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
63.86      63.59      63.35      [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
371.32     374.79     367.78     [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
47.26      45.56      44.69      [1280, 720]  VitTrack with ['object_tracking_vittrack_2023sep.onnx']
37.61      37.61      33.64      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
37.39      37.71      37.03      [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
90.84      91.34      85.77      [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
76.44      78.00      74.90      [256, 256]   MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
112.68     112.21     110.42     [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
112.48     111.86     110.04     [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
43.99      43.33      41.68      [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
44.97      44.42      41.68      [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
36.77      46.38      21.77      [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
```

GPU (CUDA-FP16):
<!-- config wechat is excluded due to its api does not support setting backend and target -->
```
$ python3 benchmark.py --all --fp32 --cfg_exclude wechat --cfg_overwrite_backend_target 2
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_CUDA
target=cv.dnn.DNN_TARGET_CUDA_FP16
mean       median     min        input size   model
25.05      25.05      24.95      [160, 120]   YuNet with ['face_detection_yunet_2023mar.onnx']
117.82     126.96     113.17     [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
88.54      88.33      88.04      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
97.43      97.38      96.98      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
69.40      68.28      66.36      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
120.92     131.57     119.37     [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
128.43     128.08     119.37     [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
64.90      63.88      62.81      [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
370.21     371.97     366.38     [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
164.28     164.75     162.94     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
299.22     300.54     295.64     [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
49.61      47.58      47.14      [1280, 720]  VitTrack with ['object_tracking_vittrack_2023sep.onnx']
149.50     151.12     147.24     [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
156.59     154.01     153.92     [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
43.66      43.64      43.31      [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
75.87      77.33      74.38      [256, 256]   MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
428.97     428.99     426.11     [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
428.66     427.46     425.66     [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
32.41      31.90      31.68      [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
33.42      35.75      31.68      [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
29.34      36.44      21.27      [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
```

### Khadas VIM3

Specs: [details](https://www.khadas.com/vim3)
- (SoC) CPU: Amlogic A311D, 2.2 GHz Quad core ARM Cortex-A73 and 1.8 GHz dual core Cortex-A53
- NPU: 5 TOPS Performance NPU INT8 inference up to 1536 MAC Supports all major deep learning frameworks including TensorFlow and Caffe 

CPU:
<!-- config wechat is excluded due to it needs building with opencv_contrib -->
```
$ python3 benchmark.py --all --cfg_exclude wechat
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
4.62       4.62       4.53       [160, 120]   YuNet with ['face_detection_yunet_2023mar.onnx']
5.24       5.29       4.53       [160, 120]   YuNet with ['face_detection_yunet_2023mar_int8.onnx']
55.04      54.55      53.54      [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
67.34      67.96      53.54      [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
29.50      45.62      26.14      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
35.59      36.22      26.14      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
35.80      35.08      34.76      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
40.32      45.32      34.76      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
71.92      66.92      62.98      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
70.68      72.31      62.98      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar_int8.onnx']
59.27      53.91      52.09      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
52.17      67.58      41.23      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
55.44      47.28      41.23      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
55.83      56.80      41.23      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
335.75     329.39     325.42     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
340.42     335.78     325.42     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
128.58     127.15     124.03     [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
125.85     126.47     110.14     [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar_int8.onnx']
179.93     170.66     166.76     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
178.61     213.72     164.61     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
1108.12    1100.93    1072.45    [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
1100.58    1121.31    982.74     [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
32.20      32.84      30.99      [1280, 720]  VitTrack with ['object_tracking_vittrack_2023sep.onnx']
78.26      78.96      75.60      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
87.18      88.22      75.60      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
83.22      84.20      80.07      [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
327.07     339.80     321.98     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
316.56     302.60     269.10     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
75.38      73.67      70.15      [256, 256]   MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
211.02     213.14     199.28     [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
210.19     217.15     199.28     [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
242.34     225.59     199.28     [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
265.33     271.87     199.28     [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may_int8.onnx']
194.77     195.13     192.69     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
197.16     200.94     192.69     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
185.45     199.47     161.37     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
187.64     180.57     161.37     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
182.53     166.96     161.37     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
182.90     178.97     161.37     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
184.26     194.43     161.37     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
180.65     180.59     155.36     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

NPU (TIMVX):

```
$ python3 benchmark.py --all --int8 --cfg_overwrite_backend_target 3
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_TIMVX
target=cv.dnn.DNN_TARGET_NPU
mean       median     min        input size   model
5.24       7.45       4.77       [160, 120]   YuNet with ['face_detection_yunet_2023mar_int8.onnx']
45.96      46.10      43.21      [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
30.25      30.30      28.68      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
19.75      20.18      18.19      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
28.75      28.85      28.47      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar_int8.onnx']
148.80     148.85     143.45     [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
143.17     141.11     136.58     [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
73.19      78.57      62.89      [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
32.11      30.50      29.97      [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar_int8.onnx']
116.32     120.72     99.40      [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
408.18     418.89     374.12     [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
37.34      38.57      32.03      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
41.82      39.84      37.63      [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
160.70     160.90     153.15     [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
160.47     160.48     151.88     [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may_int8.onnx']
239.38     237.47     231.95     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
197.61     201.16     162.69     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
196.69     164.78     162.69     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

### Atlas 200 DK

Specs: [details_en](https://e.huawei.com/uk/products/cloud-computing-dc/atlas/atlas-200), [details_cn](https://www.hiascend.com/zh/hardware/developer-kit)
- (SoC) CPU: 8-core Coretext-A55 @ 1.6 GHz (max)
- NPU: Ascend 310, dual DaVinci AI cores, 22/16/8 TOPS INT8.

CPU:
<!-- config wechat is excluded due to it needs building with opencv_contrib -->
```
$ python3 benchmark.py --all --cfg_exclude wechat
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
7.82       7.82       7.77       [160, 120]   YuNet with ['face_detection_yunet_2023mar.onnx']
8.57       8.77       7.77       [160, 120]   YuNet with ['face_detection_yunet_2023mar_int8.onnx']
92.21      92.11      91.87      [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
122.07     126.02     91.87      [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
42.93      43.26      42.75      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
55.91      57.40      42.75      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
67.85      67.91      67.47      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
70.06      70.21      67.47      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
102.49     102.65     102.10     [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
114.02     116.16     102.10     [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar_int8.onnx']
92.66      92.49      92.36      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
79.39      80.75      68.47      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
89.66      68.66      68.47      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
90.59      92.13      68.47      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
499.55     500.15     498.36     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
571.85     580.88     498.36     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
201.99     201.55     200.62     [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
216.72     217.34     200.62     [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar_int8.onnx']
313.66     313.85     312.13     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
322.98     323.45     312.13     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
1875.33    1877.53    1871.26    [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
1989.04    2005.25    1871.26    [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
143.62     143.19     137.16     [1280, 720]  VitTrack with ['object_tracking_vittrack_2023sep.onnx']
159.80     159.62     159.40     [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
152.18     152.86     145.56     [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
145.83     145.77     145.45     [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
521.46     521.66     520.28     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
541.50     544.02     520.28     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
134.02     136.01     132.06     [256, 256]   MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
360.26     360.82     359.13     [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
361.22     361.51     359.13     [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
427.85     362.87     359.13     [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
475.44     490.06     359.13     [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may_int8.onnx']
285.19     284.91     284.69     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
318.96     323.30     284.69     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
289.82     360.87     244.07     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
285.40     303.13     244.07     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
274.67     244.47     243.87     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
277.84     262.99     243.87     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
283.02     280.77     243.87     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
279.21     262.55     243.87     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

NPU (CANN):

<!-- vittrack is excluded due to HardSwish is not supported by CANN backend yet -->

```
$ python3 benchmark.py --all --fp32 --cfg_exclude wechat:crnn:vittrack --model_exclude pose_estimation_mediapipe_2023mar.onnx --cfg_overwrite_backend_target 4
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_CANN
target=cv.dnn.DNN_TARGET_NPU
mean       median     min        input size   model
2.24       2.21       2.19       [160, 120]   YuNet with ['face_detection_yunet_2022mar.onnx']
2.66       2.66       2.64       [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
2.19       2.19       2.16       [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
6.27       6.22       6.17       [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
6.94       6.94       6.85       [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
5.15       5.13       5.10       [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
5.41       5.42       5.10       [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
6.99       6.99       6.95       [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
7.63       7.64       7.43       [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
20.62      22.09      19.16      [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
28.59      28.60      27.91      [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
5.17       5.26       5.09       [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
16.45      16.44      16.31      [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
5.58       5.57       5.54       [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
```

### Toybrick RV1126

Specs: [details](https://t.rock-chips.com/en/portal.php?mod=view&aid=26)
- CPU: Quard core ARM Cortex-A7, up to 1.5GHz
- NPU (Not supported by OpenCV): 2.0TOPS, support 8bit / 16bit

CPU:
<!-- config wechat is excluded due to it needs building with opencv_contrib -->
```
$ python3 benchmark.py --all --cfg_exclude wechat
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
56.78      56.74      56.46      [160, 120]   YuNet with ['face_detection_yunet_2023mar.onnx']
51.16      51.41      45.18      [160, 120]   YuNet with ['face_detection_yunet_2023mar_int8.onnx']
1737.74    1733.23    1723.65    [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
1298.48    1336.02    920.44     [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
609.51     611.79     584.89     [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
500.21     517.38     399.97     [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
465.12     471.89     445.36     [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
389.95     385.01     318.29     [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
10.16.66.1781623.94    1607.90    1595.09    [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
1109.61    1186.03    671.15     [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar_int8.onnx']
1567.09    1578.61    1542.75    [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
1188.83    1219.46    850.92     [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
996.30     884.80     689.11     [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
849.51     805.93     507.78     [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
11855.64   11836.80   11750.10   [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
7752.60    8149.00    4429.83    [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
3260.22    3251.14    3204.85    [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
2287.10    2400.53    1482.04    [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar_int8.onnx']
2335.89    2335.93    2313.63    [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
1899.16    1945.72    1529.46    [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
37600.81   37558.85   37414.98   [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
24185.35   25519.27   13395.47   [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
411.41     448.29     397.86     [1280, 720]  VitTrack with ['object_tracking_vittrack_2023sep.onnx']
905.77     890.22     866.06     [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
780.94     817.69     653.26     [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
1315.48    1321.44    1299.68    [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
11143.23   11155.05   11105.11   [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
7056.60    7457.76    3753.42    [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
736.02     732.90     701.14     [256, 256]   MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
4267.03    4288.42    4229.69    [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
4265.58    4276.54    4222.22    [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
3678.65    4265.95    2636.57    [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
3383.73    3490.66    2636.57    [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may_int8.onnx']
2180.44    2197.45    2152.67    [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
2217.08    2241.77    2152.67    [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
2217.15    2251.65    2152.67    [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
2206.73    2219.60    2152.63    [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
2208.84    2219.14    2152.63    [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
2035.98    2185.05    1268.94    [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
1927.93    2178.84    1268.94    [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
1822.23    2213.30    1183.93    [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

### Khadas Edge2 (with RK3588)

Board specs: [details](https://www.khadas.com/edge2)
SoC specs: [details](https://www.rock-chips.com/a/en/products/RK35_Series/2022/0926/1660.html)
- CPU: 2.25GHz Quad Core ARM Cortex-A76 + 1.8GHz Quad Core Cortex-A55
- NPU (Not supported by OpenCV): Build-in 6 TOPS Performance NPU, triple core, support int4 / int8 / int16 / fp16 / bf16 / tf32

CPU:
<!-- config wechat is excluded due to it needs building with opencv_contrib -->
```
$ python3 benchmark.py --all --cfg_exclude wechat
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
2.30       2.29       2.26       [160, 120]   YuNet with ['face_detection_yunet_2023mar.onnx']
2.70       2.73       2.26       [160, 120]   YuNet with ['face_detection_yunet_2023mar_int8.onnx']
28.94      29.00      28.60      [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
37.46      38.85      28.60      [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
12.44      12.40      12.36      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
17.14      17.64      12.36      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
20.22      20.36      20.08      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
23.11      23.50      20.08      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
29.63      29.78      28.61      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
35.57      35.61      28.61      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar_int8.onnx']
27.45      27.46      27.25      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
22.95      23.37      19.13      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
27.50      19.40      19.13      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
28.46      29.33      19.13      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
151.10     151.79     146.96     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
181.69     184.19     146.96     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
53.83      52.64      50.24      [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
60.95      60.06      50.24      [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar_int8.onnx']
98.03      104.53     83.47      [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
106.91     110.68     83.47      [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
554.30     550.32     538.99     [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
591.95     599.62     538.99     [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
14.02      13.89      13.56      [1280, 720]  VitTrack with ['object_tracking_vittrack_2023sep.onnx']
45.03      44.65      43.28      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
50.87      52.24      43.28      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
42.90      42.68      42.40      [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
148.01     146.42     139.56     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
159.16     155.98     139.56     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
37.06      37.43      36.39      [256, 256]   MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
103.42     104.24     101.26     [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
103.41     104.41     100.08     [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
126.21     103.90     100.08     [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
142.53     147.66     100.08     [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may_int8.onnx']
69.49      69.52      69.17      [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
70.63      70.69      69.17      [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
67.15      72.03      61.13      [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
67.74      66.72      61.13      [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
66.26      61.46      61.13      [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
67.36      65.65      61.13      [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
68.52      69.93      61.13      [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
68.36      65.65      61.13      [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

### Horizon Sunrise X3 PI

Specs: [details_cn](https://developer.horizon.ai/sunrise)
- CPU: ARM Cortex-A53,4xCore, 1.2G
- BPU (aka NPU, not supported by OpenCV): (Bernoulli Arch) 2×Core,up to 1.0G, ~5Tops

CPU:

```
$ python3 benchmark.py --all
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
10.56      10.69      10.46      [160, 120]   YuNet with ['face_detection_yunet_2023mar.onnx']
12.45      12.60      10.46      [160, 120]   YuNet with ['face_detection_yunet_2023mar_int8.onnx']
124.80     127.36     124.45     [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
168.67     174.03     124.45     [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
55.12      55.38      54.91      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
76.31      79.00      54.91      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
77.44      77.53      77.07      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
89.22      90.40      77.07      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
132.95     133.21     132.35     [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
147.40     149.99     132.35     [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar_int8.onnx']
119.71     120.69     119.32     [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
102.57     104.40     88.49      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
114.56     88.81      88.49      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
117.12     116.07     88.49      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
653.39     653.85     651.99     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
706.43     712.61     651.99     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
252.05     252.16     250.98     [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
273.03     274.27     250.98     [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar_int8.onnx']
399.35     405.40     390.82     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
413.37     410.75     390.82     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
2516.91    2516.82    2506.54    [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
2544.65    2551.55    2506.54    [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
84.15      85.18      77.31      [1280, 720]  VitTrack with ['object_tracking_vittrack_2023sep.onnx']
168.54     169.05     168.15     [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
196.46     199.81     168.15     [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
172.55     172.83     171.85     [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
678.74     678.04     677.44     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
653.71     655.74     631.68     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
162.87     165.82     160.04     [256, 256]   MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
9.93       9.97       9.82       [100, 100]   WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
475.98     475.34     472.72     [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
475.90     477.57     472.44     [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
585.72     475.98     472.44     [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
663.34     687.10     472.44     [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may_int8.onnx']
446.82     445.92     444.32     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
453.60     456.07     444.32     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
427.47     463.88     381.10     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
432.15     421.18     381.10     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
420.61     386.28     380.35     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
425.24     426.69     380.35     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
431.14     447.85     380.35     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
424.77     417.01     380.35     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

### MAIX-III AX-PI

Specs: [details_en](https://wiki.sipeed.com/hardware/en/maixIII/ax-pi/axpi.html#Hardware), [details_cn](https://wiki.sipeed.com/hardware/zh/maixIII/ax-pi/axpi.html#%E7%A1%AC%E4%BB%B6%E5%8F%82%E6%95%B0)
SoC specs: [details_cn](https://axera-tech.com/product/T7297367876123493768)
- CPU: Quad cores ARM Cortex-A7
- NPU (Not supported by OpenCV): 14.4Tops@int4,3.6Tops@int8

CPU:
<!-- config wechat is excluded due to it needs building with opencv_contrib -->
```
$ python3 benchmark.py --all --cfg_exclude wechat
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
83.95      83.76      83.62      [160, 120]   YuNet with ['face_detection_yunet_2023mar.onnx']
79.35      79.92      75.47      [160, 120]   YuNet with ['face_detection_yunet_2023mar_int8.onnx']
2326.96    2326.49    2326.08    [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
1950.83    1988.86    1648.47    [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
823.42     823.35     822.50     [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
750.31     757.91     691.41     [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
664.73     664.61     663.84     [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
596.29     603.96     540.72     [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
2175.34    2173.62    2172.91    [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
1655.11    1705.43    1236.22    [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar_int8.onnx']
2123.08    2122.92    2122.18    [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
1619.08    1672.32    1215.05    [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
1470.74    1216.86    1215.05    [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
1287.09    1242.01    873.92     [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
15841.89   15841.20   15828.32   [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
11652.03   12079.50   8299.15    [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
4371.75    4396.81    4370.29    [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
3428.89    3521.87    2670.46    [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar_int8.onnx']
3421.19    3412.22    3411.20    [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
2990.22    3034.11    2645.09    [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
50633.38   50617.44   50614.78   [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
36260.23   37731.28   24683.40   [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
548.36     551.97     537.90     [1280, 720]  VitTrack with ['object_tracking_vittrack_2023sep.onnx']
1285.54    1285.40    1284.43    [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
1204.04    1211.89    1137.65    [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
1849.87    1848.78    1847.80    [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
14895.99   14894.27   14884.17   [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
10496.44   10931.97   6976.60    [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
1045.98    1052.05    1040.56    [256, 256]   MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
5899.23    5900.08    5896.73    [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
5889.39    5890.58    5878.81    [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
5436.61    5884.03    4665.77    [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
5185.53    5273.76    4539.47    [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may_int8.onnx']
3230.95    3226.14    3225.53    [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
3281.31    3295.46    3225.53    [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
3247.56    3337.52    3196.25    [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
3243.20    3276.35    3196.25    [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
3230.49    3196.80    3195.02    [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
3065.33    3217.99    2348.42    [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
2976.24    3244.75    2348.42    [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
2864.72    3219.46    2208.44    [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

### StarFive VisionFive 2

Specs: [details_cn](https://doc.rvspace.org/VisionFive2/PB/VisionFive_2/specification_pb.html), [details_en](https://doc-en.rvspace.org/VisionFive2/Product_Brief/VisionFive_2/specification_pb.html)
- CPU: StarFive JH7110 with RISC-V quad-core CPU with 2 MB L2 cache and a monitor core, supporting RV64GC ISA, working up to 1.5 GHz
- GPU: IMG BXE-4-32 MC1 with work frequency up to 600 MHz

CPU:
<!-- config wechat is excluded due to it needs building with opencv_contrib -->
```
$ python3 benchmark.py --all --cfg_exclude wechat
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
41.13      41.07      41.06      [160, 120]   YuNet with ['face_detection_yunet_2023mar.onnx']
37.43      37.83      34.35      [160, 120]   YuNet with ['face_detection_yunet_2023mar_int8.onnx']
1169.96    1169.72    1168.74    [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
887.13     987.00     659.71     [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
423.91     423.98     423.62     [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
350.89     358.26     292.27     [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
319.69     319.26     318.76     [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
278.74     282.75     245.22     [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
1127.61    1127.36    1127.17    [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
785.44     819.07     510.77     [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar_int8.onnx']
1079.69    1079.66    1079.31    [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
820.15     845.54     611.26     [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
698.13     612.64     516.41     [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
600.12     564.13     382.59     [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
8116.21    8127.96    8113.70    [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
5408.02    5677.71    3240.16    [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
2267.96    2268.26    2266.59    [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
1605.80    1671.91    1073.50    [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar_int8.onnx']
1731.61    1733.17    1730.54    [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
1435.43    1477.52    1196.01    [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
26185.41   26190.85   26168.68   [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
17019.14   17923.20   9673.68    [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
288.95     290.28     260.40     [1280, 720]  VitTrack with ['object_tracking_vittrack_2023sep.onnx']
628.64     628.47     628.27     [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
562.90     569.91     509.93     [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
910.38     910.94     909.64     [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
7613.64    7626.26    7606.07    [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
4895.28    5166.85    2716.65    [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
524.52     526.33     522.71     [256, 256]   MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
2988.22    2996.51    2980.17    [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
2981.84    2979.74    2975.80    [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
2610.78    2979.14    1979.37    [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
2425.29    2478.92    1979.37    [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may_int8.onnx']
1404.01    1415.46    1401.36    [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
1425.42    1426.51    1401.36    [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
1432.21    1450.47    1401.36    [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
1425.24    1448.27    1401.36    [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
1428.84    1446.76    1401.36    [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
1313.68    1427.46    808.70     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
1242.07    1408.93    808.70     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
1174.32    1426.07    774.78     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

### Khadas VIM4

Board specs: https://www.khadas.com/vim4, https://dl.khadas.com/products/vim4/specs/vim4-specs.pdf

SoC specs:
- CPU: Amlogic A311D2, 2.2GHz Quad core ARM Cortex-A73 and 2.0GHz Quad core Cortex-A53 CPU, with 32-bit STM32G031K6 microprocessor.
- GPU: Mali G52MP8(8EE) 800Mhz GPU.
- NPU: 3.2 TOPS Build-in NPU (Not supported by dnn yet)

CPU:
<!-- config wechat is excluded due to it needs building with opencv_contrib -->
```
$ python3 benchmark.py --all --cfg_exclude wechat
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
4.27       4.33       4.17       [160, 120]   YuNet with ['face_detection_yunet_2023mar.onnx']
4.58       4.58       4.17       [160, 120]   YuNet with ['face_detection_yunet_2023mar_int8.onnx']
39.94      39.98      39.42      [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
49.33      50.59      39.42      [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
17.28      17.63      16.93      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
22.78      23.27      16.93      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
25.83      25.46      25.30      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
28.23      28.87      25.30      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
47.68      47.72      45.65      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
49.25      49.45      45.65      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar_int8.onnx']
38.73      38.18      37.89      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
33.68      33.99      29.16      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
36.22      29.50      29.16      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
36.12      35.69      29.16      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
219.81     220.21     215.97     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
224.03     222.27     215.97     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
81.46      84.07      77.95      [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
81.46      83.07      77.95      [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar_int8.onnx']
136.14     136.12     128.61     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
136.57     136.30     128.61     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
805.54     805.23     795.82     [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
768.87     766.00     727.12     [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
29.47      29.39      28.49      [1280, 720]  VitTrack with ['object_tracking_vittrack_2023sep.onnx']
54.45      54.76      53.45      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
60.84      61.07      53.45      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
57.22      57.22      56.14      [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
218.22     224.50     215.54     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
199.53     203.24     179.85     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
53.06      54.61      51.82      [256, 256]   MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
148.82     149.62     146.73     [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
148.91     148.99     146.59     [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
175.33     150.60     146.59     [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
194.12     201.48     146.59     [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may_int8.onnx']
133.27     132.90     132.54     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
135.27     135.12     132.54     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
127.49     137.43     113.82     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
129.18     125.95     113.82     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
125.82     114.44     113.82     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
127.63     124.81     113.82     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
129.24     134.50     113.82     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
126.64     125.09     110.45     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

### Jetson Nano Orin

Specs: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
- CPU: 6-core Arm® Cortex®-A78AE v8.2 64-bit CPU, 1.5MB L2 + 4MB L3
- GPU: 1024-core NVIDIA Ampere architecture GPU with 32 Tensor Cores, max freq 625MHz

CPU:

```
$ python3 benchmark.py --all
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
2.59       2.62       2.50       [160, 120]   YuNet with ['face_detection_yunet_2023mar.onnx']
2.98       2.97       2.50       [160, 120]   YuNet with ['face_detection_yunet_2023mar_int8.onnx']
20.05      24.76      19.75      [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
31.84      32.72      19.75      [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
9.15       9.22       9.04       [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
14.33      15.35      9.04       [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
15.00      15.17      14.80      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
18.37      18.63      14.80      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
24.86      25.09      24.12      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
30.17      34.51      24.12      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar_int8.onnx']
18.47      18.55      18.23      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
17.08      17.30      15.80      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
21.26      15.89      15.80      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
23.19      24.15      15.80      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
102.30     101.90     101.44     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
142.33     146.24     101.44     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
39.91      39.01      38.46      [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
51.35      50.70      38.46      [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar_int8.onnx']
125.31     126.50     121.92     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
132.95     133.67     121.92     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
400.91     430.48     384.87     [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
476.63     509.48     384.87     [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
19.16      19.91      18.04      [1280, 720]  VitTrack with ['object_tracking_vittrack_2023sep.onnx']
27.73      26.93      26.72      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
35.16      41.14      26.72      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
33.05      33.18      32.67      [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
93.58      94.02      92.36      [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
119.80     153.20     92.36      [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
31.51      32.19      30.69      [256, 256]   MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
3.53       3.53       3.51       [100, 100]   WeChatQRCode with ['detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
78.10      77.77      77.17      [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
78.03      78.38      77.17      [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
99.09      79.42      77.17      [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
112.82     116.06     77.17      [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may_int8.onnx']
142.97     142.84     135.56     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
144.53     148.52     135.56     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
134.47     146.62     112.91     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
136.37     131.39     112.91     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
132.08     117.15     109.24     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
135.17     130.23     109.24     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
138.38     143.25     109.24     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
137.08     134.22     109.24     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```

GPU (CUDA-FP32):

```
$ python3 benchmark.py --all --fp32 --cfg_exclude wechat --cfg_overwrite_backend_target 1
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_CUDA
target=cv.dnn.DNN_TARGET_CUDA
mean       median     min        input size   model
5.23       5.27       5.17       [160, 120]   YuNet with ['face_detection_yunet_2023mar.onnx']
7.59       7.62       7.55       [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
8.48       8.46       8.37       [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
12.29      13.04      11.11      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
12.91      13.28      12.79      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
8.41       8.42       8.35       [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
9.36       9.43       8.35       [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
32.58      32.71      31.11      [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
16.33      16.08      16.04      [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
24.46      24.35      24.01      [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
103.28     103.41     102.37     [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
19.75      19.78      19.10      [1280, 720]  VitTrack with ['object_tracking_vittrack_2023sep.onnx']
10.84      10.76      10.75      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
14.50      14.50      14.36      [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
23.53      23.36      23.16      [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
26.54      27.22      25.99      [256, 256]   MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
27.49      27.80      26.97      [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
27.53      27.75      26.95      [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
15.66      16.30      15.41      [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
15.91      15.80      15.41      [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
13.58      16.70      9.48       [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
```

GPU (CUDA-FP16):

```
$ python3 benchmark.py --all --fp32 --cfg_exclude wechat --cfg_overwrite_backend_target 2
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_CUDA
target=cv.dnn.DNN_TARGET_CUDA_FP16
mean       median     min        input size   model
5.00       5.04       4.92       [160, 120]   YuNet with ['face_detection_yunet_2023mar.onnx']
5.09       5.08       5.05       [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
6.81       6.86       6.66       [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
9.19       10.18      9.06       [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
16.20      16.62      15.93      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
6.84       6.82       6.80       [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
7.46       7.87       6.80       [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
14.18      14.16      14.03      [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
13.35      13.10      13.04      [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
19.94      19.95      19.50      [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
72.25      72.91      70.99      [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
22.37      22.44      21.60      [1280, 720]  VitTrack with ['object_tracking_vittrack_2023sep.onnx']
8.92       8.92       8.84       [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
11.11      11.13      10.98      [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
13.22      13.23      13.12      [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
26.79      27.04      26.24      [256, 256]   MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
19.71      19.75      19.47      [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
19.76      19.93      19.47      [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
16.30      15.88      15.80      [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
16.36      16.51      15.80      [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
13.64      16.27      8.90       [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
```

### Atlas 200I DK A2

Specs: https://www.hiascend.com/hardware/developer-kit-a2 (cn)
- CPU: 4 core * 1.0 GHz
- NPU: Ascend 310B, 8 TOPS INT8, 4 TFLOPS FP16 (Benchmark results are coming later)

CPU:
<!-- config wechat is excluded due to it needs building with opencv_contrib -->
```
$ python3 benchmark.py --all --cfg_exclude wechat
Benchmarking ...
backend=cv.dnn.DNN_BACKEND_OPENCV
target=cv.dnn.DNN_TARGET_CPU
mean       median     min        input size   model
6.67       6.80       5.17       [160, 120]   YuNet with ['face_detection_yunet_2023mar.onnx']
8.70       9.22       5.17       [160, 120]   YuNet with ['face_detection_yunet_2023mar_int8.onnx']
78.90      81.48      74.18      [150, 150]   SFace with ['face_recognition_sface_2021dec.onnx']
113.79     115.49     74.18      [150, 150]   SFace with ['face_recognition_sface_2021dec_int8.onnx']
36.94      38.64      33.23      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july.onnx']
55.14      60.34      33.23      [112, 112]   FacialExpressionRecog with ['facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
56.00      55.56      51.99      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb.onnx']
71.09      72.20      51.99      [224, 224]   MPHandPose with ['handpose_estimation_mediapipe_2023feb_int8.onnx']
78.01      80.36      73.97      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar.onnx']
111.56     113.84     73.97      [192, 192]   PPHumanSeg with ['human_segmentation_pphumanseg_2023mar_int8.onnx']
70.20      68.69      65.12      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr.onnx']
61.72      63.39      48.28      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr.onnx']
80.12      54.37      48.28      [224, 224]   MobileNet with ['image_classification_mobilenetv1_2022apr_int8.onnx']
87.42      96.71      48.28      [224, 224]   MobileNet with ['image_classification_mobilenetv2_2022apr_int8.onnx']
417.31     417.30     406.17     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan.onnx']
597.15     619.24     406.17     [224, 224]   PPResNet with ['image_classification_ppresnet50_2022jan_int8.onnx']
155.73     153.40     145.10     [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar.onnx']
200.41     200.24     145.10     [320, 240]   LPD_YuNet with ['license_plate_detection_lpd_yunet_2023mar_int8.onnx']
253.05     252.73     245.91     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov.onnx']
274.44     269.76     245.91     [416, 416]   NanoDet with ['object_detection_nanodet_2022nov_int8.onnx']
1407.75    1416.44    1357.23    [640, 640]   YoloX with ['object_detection_yolox_2022nov.onnx']
1716.25    1709.35    1357.23    [640, 640]   YoloX with ['object_detection_yolox_2022nov_int8.onnx']
37.02      37.66      32.50      [1280, 720]  VitTrack with ['object_tracking_vittrack_2023sep.onnx']
92.56      97.78      87.87      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb.onnx']
119.29     123.56     87.87      [192, 192]   MPPalmDet with ['palm_detection_mediapipe_2023feb_int8.onnx']
90.13      90.75      87.78      [224, 224]   MPPersonDet with ['person_detection_mediapipe_2023mar.onnx']
285.75     284.54     278.06     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov.onnx']
389.02     405.12     278.06     [128, 256]   YoutuReID with ['person_reid_youtu_2021nov_int8.onnx']
83.16      85.91      77.83      [256, 256]   MPPose with ['pose_estimation_mediapipe_2023mar.onnx']
219.28     220.74     214.53     [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may.onnx']
217.18     227.44     207.15     [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may.onnx']
319.73     210.22     207.15     [640, 480]   PPOCRDet with ['text_detection_cn_ppocrv3_2023may_int8.onnx']
396.47     399.45     207.15     [640, 480]   PPOCRDet with ['text_detection_en_ppocrv3_2023may_int8.onnx']
165.34     172.10     156.36     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2021sep.onnx']
169.22     174.21     156.36     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov.onnx']
158.82     172.23     135.52     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2021sep.onnx']
159.39     156.42     135.52     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2023feb_fp16.onnx']
155.87     146.82     135.52     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2023feb_fp16.onnx']
163.43     152.16     135.52     [1280, 720]  CRNN with ['text_recognition_CRNN_CH_2022oct_int8.onnx']
173.46     162.85     135.52     [1280, 720]  CRNN with ['text_recognition_CRNN_CN_2021nov_int8.onnx']
175.28     145.22     135.52     [1280, 720]  CRNN with ['text_recognition_CRNN_EN_2022oct_int8.onnx']
```