Spaces:
Running
Running
File size: 6,800 Bytes
04fa07a 2d71661 d4e30d8 04fa07a 8c9a116 04fa07a 2d71661 04fa07a b7608ef 04fa07a 6128586 04fa07a b7608ef 04fa07a b7608ef 04fa07a b7608ef 04fa07a 6128586 04fa07a 6eeb9e0 d4e30d8 04fa07a b7608ef 04fa07a b7608ef 6eeb9e0 b7608ef 6eeb9e0 b7608ef 6eeb9e0 b7608ef 04fa07a b7608ef 04fa07a f1ea272 04fa07a b7608ef 04fa07a b7608ef 04fa07a b7608ef 6128586 04fa07a b7608ef 04fa07a b7608ef 6eeb9e0 b7608ef 04fa07a b7608ef 04fa07a b7608ef 04fa07a b7608ef f1ea272 d4e30d8 04fa07a b7608ef 6eeb9e0 b7608ef 6eeb9e0 b7608ef 6128586 b7608ef 04fa07a f1ea272 b7608ef 04fa07a b7608ef 2d71661 04fa07a 2d71661 04fa07a f1ea272 04fa07a 2d71661 04fa07a b7608ef 2d71661 04fa07a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import os
import requests
import pandas as pd
import numpy as np
import joblib
import gradio as gr
from datetime import datetime, timedelta
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image as keras_image
from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preprocess
from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess
from tensorflow.keras.losses import BinaryFocalCrossentropy
from PIL import Image
# --- CONFIGURATION ---
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
API_URL = (
"https://archive-api.open-meteo.com/v1/archive"
"?latitude={lat}&longitude={lon}"
"&start_date={start}&end_date={end}"
"&daily=temperature_2m_max,temperature_2m_min,"
"precipitation_sum,windspeed_10m_max,"
"relative_humidity_2m_max,relative_humidity_2m_min"
"&timezone=UTC"
)
# --- LOAD MODELS ---
def load_models():
# Fire detector (VGG16)
vgg_model = load_model(
'vgg16_focal_unfreeze_more.keras',
custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
)
# Severity classifier (Xception)
def focal_loss_fixed(gamma=2., alpha=.25):
import tensorflow.keras.backend as K
def loss_fn(y_true, y_pred):
eps = K.epsilon(); y_pred = K.clip(y_pred, eps, 1.-eps)
ce = -y_true * K.log(y_pred)
w = alpha * K.pow(1-y_pred, gamma)
return K.mean(w * ce, axis=-1)
return loss_fn
xce_model = load_model(
'severity_post_tta.keras',
custom_objects={'focal_loss_fixed': focal_loss_fixed()}
)
# Ensemble and trend models
rf_model = joblib.load('ensemble_rf_model.pkl')
xgb_model = joblib.load('ensemble_xgb_model.pkl')
lr_model = joblib.load('wildfire_logistic_model_synthetic.joblib')
return vgg_model, xce_model, rf_model, xgb_model, lr_model
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
# --- RULES & TEMPLATES ---
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
task_rules = {
'mild': {'decrease':'mild','same':'mild','increase':'moderate'},
'moderate':{'decrease':'mild','same':'moderate','increase':'severe'},
'severe': {'decrease':'moderate','same':'severe','increase':'severe'}
}
templates = {
'mild': (
"**1. Immediate actions:** Monitor fire; deploy spot crews.\n"
"**2. Evacuation:** No mass evacuation; notify nearby communities.\n"
"**3. Short-term containment:** Establish fire lines.\n"
"**4. Long-term prevention:** Controlled underburning; vegetation management.\n"
"**5. Education:** Inform public on firewatch and reporting."
),
'moderate': (
"**1. Immediate actions:** Dispatch engines and aerial support.\n"
"**2. Evacuation:** Prepare evacuation zones; advise voluntary evacuation.\n"
"**3. Short-term containment:** Build fire breaks; water drops.\n"
"**4. Long-term prevention:** Fuel reduction programs.\n"
"**5. Education:** Community drills and awareness campaigns."
),
'severe': (
"**1. Immediate actions:** Full suppression with air tankers.\n"
"**2. Evacuation:** Mandatory evacuation; open shelters.\n"
"**3. Short-term containment:** Fire retardant lines; backfires.\n"
"**4. Long-term prevention:** Reforestation; infrastructure hardening.\n"
"**5. Education:** Emergency response training; risk communication."
)
}
# --- PIPELINE FUNCTIONS ---
def detect_fire(img):
x = keras_image.img_to_array(img.resize((128,128)))[None]
x = vgg_preprocess(x)
prob = float(vgg_model.predict(x)[0][0])
return prob >= 0.5, prob
def classify_severity(img):
x = keras_image.img_to_array(img.resize((224,224)))[None]
x = xce_preprocess(x)
preds = xception_model.predict(x)
rf_p = rf_model.predict(preds)[0]
xgb_p = xgb_model.predict(preds)[0]
ensemble = int(round((rf_p + xgb_p)/2))
return target_map.get(ensemble, 'moderate')
def fetch_weather_trend(lat, lon):
end = datetime.utcnow()
start = end - timedelta(days=1)
url = API_URL.format(lat=lat, lon=lon,
start=start.strftime('%Y-%m-%d'),
end=end.strftime('%Y-%m-%d'))
df = pd.DataFrame(requests.get(url).json().get('daily', {}))
for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
df[c] = pd.to_numeric(df.get(c,[]), errors='coerce')
df['precipitation'] = df['precipitation_sum'].fillna(0)
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
df['wind_speed'] = df['windspeed_10m_max']
df['fire_risk_score'] = (
0.4*(df['temperature']/55) +
0.2*(1-df['humidity']/100) +
0.3*(df['wind_speed']/60) +
0.1*(1-df['precipitation']/50)
)
feats = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']]
feat = feats.fillna(feats.mean()).iloc[-1].values.reshape(1,-1)
trend_cl = lr_model.predict(feat)[0]
return trend_map.get(trend_cl, 'same')
def generate_recommendations(original_severity, weather_trend):
# determine projected severity
proj = task_rules[original_severity][weather_trend]
rec = templates[proj]
# proper multi-line header
header = f"""**Original:** {original_severity.title()}
**Trend:** {weather_trend.title()}
**Projected:** {proj.title()}\n\n"""
return header + rec
# --- GRADIO INTERFACE ---
def pipeline(image):
img = Image.fromarray(image).convert('RGB')
fire, prob = detect_fire(img)
if not fire:
return f"No wildfire detected (prob={prob:.2f})", "N/A", "N/A", "**No wildfire detected. Stay alert.**"
sev = classify_severity(img)
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
recs = generate_recommendations(sev, trend)
return f"Fire Detected (prob={prob:.2f})", sev.title(), trend, recs
interface = gr.Interface(
fn=pipeline,
inputs=gr.Image(type='numpy', label='Upload Wildfire Image'),
outputs=[
gr.Textbox(label='Fire Status'),
gr.Textbox(label='Severity Level'),
gr.Textbox(label='Weather Trend'),
gr.Markdown(label='Recommendations')
],
title='Wildfire Detection & Management Assistant',
description='Upload an image from a forest region in Pakistan to determine wildfire presence, severity, weather-driven trend, projection, and get expert recommendations.'
)
if __name__ == '__main__':
interface.launch() |