File size: 18,851 Bytes
d6d82c2
 
 
 
7dfe957
47cd112
91a3ee9
a95a188
 
 
7b65e1e
f259de7
aded6a5
 
4e86ac5
d6d82c2
47cd112
 
 
 
 
 
c38e2fa
 
 
 
d6d82c2
 
 
 
 
 
a95a188
7dfe957
d6d82c2
 
 
 
7b65e1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c38e2fa
 
 
 
 
 
 
 
 
 
6f3aee6
4e86ac5
 
 
 
c38e2fa
 
 
 
4e86ac5
 
 
 
 
 
 
 
 
 
 
 
c38e2fa
 
4e86ac5
c38e2fa
443ca56
 
c38e2fa
f259de7
aded6a5
 
 
 
 
f259de7
068c749
aded6a5
443ca56
 
 
 
 
 
 
 
 
 
 
 
 
aded6a5
c38e2fa
aded6a5
 
2a3ff67
 
 
f259de7
aded6a5
 
2a3ff67
aded6a5
 
 
2a3ff67
aded6a5
 
 
6f3aee6
 
aded6a5
 
 
 
ec41997
aded6a5
 
 
 
 
 
 
 
 
 
 
443ca56
aded6a5
 
 
 
4e86ac5
 
 
aded6a5
 
 
 
 
 
c38e2fa
aded6a5
c38e2fa
 
be03516
a95a188
f259de7
 
 
c38e2fa
a95a188
be03516
4e86ac5
 
c38e2fa
 
4e86ac5
f259de7
c38e2fa
 
110d39e
54fb2f1
b17d8bf
f259de7
 
 
 
54fb2f1
 
ec41997
f259de7
b17d8bf
f259de7
54fb2f1
443ca56
b17d8bf
3a2e47e
 
 
 
f259de7
 
443ca56
f259de7
4e86ac5
 
 
 
 
 
 
c38e2fa
f259de7
c38e2fa
f259de7
c38e2fa
3a2e47e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e86ac5
 
 
 
 
 
 
 
 
 
 
 
ec41997
443ca56
4e86ac5
 
 
 
 
 
 
 
 
 
 
 
 
f259de7
 
443ca56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f259de7
c38e2fa
 
f259de7
443ca56
 
c38e2fa
7dfe957
443ca56
f259de7
7dfe957
f259de7
 
 
 
7dfe957
 
f259de7
 
7dfe957
 
443ca56
 
7dfe957
 
 
f259de7
443ca56
f259de7
a95a188
f259de7
 
a95a188
443ca56
f259de7
443ca56
 
 
 
 
 
 
 
 
 
 
 
f259de7
443ca56
a95a188
f259de7
443ca56
 
91a3ee9
a95a188
91a3ee9
7b65e1e
7dfe957
7b65e1e
 
d6d82c2
91a3ee9
 
7b65e1e
 
 
 
 
 
 
 
 
 
 
91a3ee9
 
 
7b65e1e
 
 
 
 
 
91a3ee9
7dfe957
91a3ee9
 
7b65e1e
 
 
 
 
 
 
 
91a3ee9
7b65e1e
 
91a3ee9
 
7dfe957
91a3ee9
 
 
 
7b65e1e
91a3ee9
 
 
 
7dfe957
d6d82c2
 
 
 
 
 
 
 
47cd112
aded6a5
 
050f2a9
d6d82c2
47cd112
 
 
 
aded6a5
050f2a9
aded6a5
c49ad44
 
aded6a5
c49ad44
 
 
 
 
 
 
aded6a5
c49ad44
7db04ce
aded6a5
d6d82c2
47cd112
 
 
 
 
 
d6d82c2
 
 
 
7b65e1e
 
d6d82c2
7dfe957
d6d82c2
7b65e1e
91a3ee9
7b65e1e
d6d82c2
 
 
 
f259de7
d6d82c2
 
 
7b65e1e
d6d82c2
 
 
 
7b65e1e
d6d82c2
7dfe957
 
 
d6d82c2
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
from fastapi import FastAPI, File, UploadFile, Form, HTTPException, Request
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from typing import List, Optional
from pydantic import BaseModel
import os
import requests
import json
import traceback
import io
import concurrent.futures
import subprocess
import sys
import time

# Define the TranslationRequest model
class TranslationRequest(BaseModel):
    text: str
    source_lang: str
    target_lang: str

# Import transformers for local model inference
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import torch

# --- Configuration ---
# Determine the base directory of the main.py script
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
# Adjust paths to go one level up from backend to find templates/static
TEMPLATE_DIR = os.path.join(os.path.dirname(BASE_DIR), "templates")
STATIC_DIR = os.path.join(os.path.dirname(BASE_DIR), "static")

# --- Initialize FastAPI ---
app = FastAPI()
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static")
templates = Jinja2Templates(directory=TEMPLATE_DIR)

# --- Language mapping ---
LANGUAGE_MAP = {
    "en": "English",
    "fr": "French",
    "es": "Spanish", 
    "de": "German",
    "zh": "Chinese",
    "ru": "Russian",
    "ja": "Japanese",
    "hi": "Hindi",
    "pt": "Portuguese",
    "tr": "Turkish",
    "ko": "Korean",
    "it": "Italian"
}

# --- Set cache directory to a writeable location ---
# This is crucial for Hugging Face Spaces where /app/.cache is not writable
# Using /tmp which is typically writable in most environments
os.environ['TRANSFORMERS_CACHE'] = '/tmp/transformers_cache'
os.environ['HF_HOME'] = '/tmp/hf_home'
os.environ['XDG_CACHE_HOME'] = '/tmp/cache'

# --- Global model and tokenizer variables ---
translator = None
tokenizer = None
model = None
model_initialization_attempts = 0
max_model_initialization_attempts = 3
last_initialization_attempt = 0
initialization_cooldown = 300  # 5 minutes cooldown between retry attempts

# --- Model initialization function ---
def initialize_model():
    """Initialize the translation model and tokenizer."""
    global translator, tokenizer, model, model_initialization_attempts, last_initialization_attempt
    
    # Check if we've exceeded maximum attempts and if enough time has passed since last attempt
    current_time = time.time()
    if (model_initialization_attempts >= max_model_initialization_attempts and 
        current_time - last_initialization_attempt < initialization_cooldown):
        print(f"Maximum initialization attempts reached. Waiting for cooldown period.")
        return False
    
    # Update attempt counter and timestamp
    model_initialization_attempts += 1
    last_initialization_attempt = current_time
    
    try:
        print(f"Initializing model and tokenizer (attempt {model_initialization_attempts})...")
        
        # Use a smaller, faster model
        model_name = "Helsinki-NLP/opus-mt-en-ar"  # Much smaller English-to-Arabic model
        
        # Check for available device - properly detect CPU/GPU
        device = "cpu"  # Default to CPU which is more reliable
        if torch.cuda.is_available():
            device = "cuda"
            print(f"CUDA is available: {torch.cuda.get_device_name(0)}")
        print(f"Device set to use: {device}")
        
        # Load the tokenizer with explicit cache directory
        print(f"Loading tokenizer from {model_name}...")
        try:
            tokenizer = AutoTokenizer.from_pretrained(
                model_name, 
                cache_dir="/tmp/transformers_cache",
                use_fast=True,
                local_files_only=False
            )
            if tokenizer is None:
                print("Failed to load tokenizer")
                return False
            print("Tokenizer loaded successfully")
        except Exception as e:
            print(f"Error loading tokenizer: {e}")
            return False
        
        # Load the model with explicit device placement
        print(f"Loading model from {model_name}...")
        try:
            model = AutoModelForSeq2SeqLM.from_pretrained(
                model_name,
                cache_dir="/tmp/transformers_cache",
                low_cpu_mem_usage=True,  # Better memory usage
                torch_dtype=torch.float32  # Explicit dtype for better compatibility
            )
            # Move model to device after loading
            model = model.to(device)
            print(f"Model loaded with PyTorch and moved to {device}")
        except Exception as e:
            print(f"Error loading model: {e}")
            print("Model initialization failed")
            return False
        
        # Create a pipeline with the loaded model and tokenizer
        print("Creating translation pipeline...")
        try:
            # Create the pipeline with explicit model and tokenizer
            translator = pipeline(
                "translation",
                model=model,
                tokenizer=tokenizer,
                device=0 if device == "cuda" else -1,  # Proper device mapping
                framework="pt"  # Explicitly use PyTorch
            )
            
            if translator is None:
                print("Failed to create translator pipeline")
                return False
                
            # Test the model with a simple translation to verify it works
            test_result = translator("hello world", max_length=128)
            print(f"Model test result: {test_result}")
            if not test_result or not isinstance(test_result, list) or len(test_result) == 0:
                print("Model test failed: Invalid output format")
                return False
            
            # Success - reset the attempt counter
            model_initialization_attempts = 0
            print(f"Model {model_name} successfully initialized and tested")
            return True
        except Exception as inner_e:
            print(f"Error creating translation pipeline: {inner_e}")
            traceback.print_exc()
            return False
    except Exception as e:
        print(f"Critical error initializing model: {e}")
        traceback.print_exc()
        return False

# --- Translation Function ---
def translate_text(text, source_lang, target_lang):
    """Translate text using local model or fallback to online services."""
    global translator, tokenizer, model
    
    print(f"Translation Request - Source Lang: {source_lang}, Target Lang: {target_lang}")
    
    # Check if model is initialized, if not try to initialize it
    if not model or not tokenizer or not translator:
        success = initialize_model()
        if not success:
            print("Local model initialization failed, using fallback translation")
            return use_fallback_translation(text, source_lang, target_lang)
    
    try:
        # Only send the raw text to the Helsinki model
        text_to_translate = text
        
        # Use a more reliable timeout approach with concurrent.futures
        with concurrent.futures.ThreadPoolExecutor() as executor:
            future = executor.submit(
                lambda: translator(
                    text_to_translate,
                    max_length=768
                )[0]["translation_text"]
            )
            
            try:
                # Set a reasonable timeout
                result = future.result(timeout=10)
                
                # Post-process the result for Arabic cultural adaptation
                if target_lang == "ar":
                    result = culturally_adapt_arabic(result)
                
                return result
            except concurrent.futures.TimeoutError:
                print(f"Model inference timed out after 10 seconds, falling back to online translation")
                return use_fallback_translation(text, source_lang, target_lang)
            except Exception as e:
                print(f"Error during model inference: {e}")
                
                # If the model failed during inference, try to re-initialize it for next time
                # but use fallback for this request
                initialize_model()
                return use_fallback_translation(text, source_lang, target_lang)
    except Exception as e:
        print(f"Error using local model: {e}")
        traceback.print_exc()
        return use_fallback_translation(text, source_lang, target_lang)

def culturally_adapt_arabic(text: str) -> str:
    """Apply post-processing rules to enhance Arabic translation with cultural sensitivity."""
    # Replace Latin punctuation with Arabic ones
    text = text.replace('?', '؟').replace(';', '؛').replace(',', '،')
    
    # If the text starts with common translation artifacts like "Translation:" or the prompt instructions, remove them
    common_prefixes = [
        "الترجمة:", "ترجمة:", "النص المترجم:", 
        "Translation:", "Arabic translation:"
    ]
    for prefix in common_prefixes:
        if text.startswith(prefix):
            text = text[len(prefix):].strip()
    
    # Additional cultural adaptations can be added here
    
    return text

# --- Function to check model status and trigger re-initialization if needed ---
def check_and_reinitialize_model():
    """Check if model needs to be reinitialized and do so if necessary"""
    global translator, model, tokenizer
    
    try:
        # If model isn't initialized yet, try to initialize it
        if not model or not tokenizer or not translator:
            print("Model not initialized. Attempting initialization...")
            return initialize_model()
            
        # Test the existing model with a simple translation
        test_text = "hello"
        result = translator(test_text, max_length=128)
        
        # If we got a valid result, model is working fine
        if result and isinstance(result, list) and len(result) > 0:
            print("Model check: Model is functioning correctly.")
            return True
        else:
            print("Model check: Model returned invalid result. Reinitializing...")
            return initialize_model()
    except Exception as e:
        print(f"Error checking model status: {e}")
        print("Model may be in a bad state. Attempting reinitialization...")
        return initialize_model()

def use_fallback_translation(text, source_lang, target_lang):
    """Use various fallback online translation services."""
    print("Using fallback translation...")
    
    # Try Google Translate API with a wrapper first (most reliable)
    try:
        print("Attempting fallback with Google Translate (no API key)")
        from googletrans import Translator
        google_translator = Translator(service_urls=['translate.google.com', 'translate.google.co.kr'])
        result = google_translator.translate(text, src=source_lang, dest=target_lang)
        if result and result.text:
            print("Google Translate successful!")
            return result.text
    except Exception as e:
        print(f"Error with Google Translate fallback: {str(e)}")
    
    # List of LibreTranslate servers to try with increased timeout
    libre_servers = [
        "https://translate.terraprint.co/translate",
        "https://libretranslate.de/translate",
        "https://translate.argosopentech.com/translate",
        "https://translate.fedilab.app/translate",
        "https://trans.zillyhuhn.com/translate"  # Additional server
    ]
    
    # Try each LibreTranslate server with increased timeout
    for server in libre_servers:
        try:
            print(f"Attempting fallback translation using LibreTranslate: {server}")
            headers = {
                "Content-Type": "application/json"
            }
            payload = {
                "q": text,
                "source": source_lang,
                "target": target_lang
            }
            
            # Use a longer timeout for the request (8 seconds instead of 5)
            response = requests.post(server, json=payload, headers=headers, timeout=8)
            
            if response.status_code == 200:
                result = response.json()
                if "translatedText" in result:
                    print(f"LibreTranslate successful using {server}")
                    return result["translatedText"]
        except Exception as e:
            print(f"Error with LibreTranslate {server}: {str(e)}")
            continue
    
    # Try MyMemory as another fallback
    try:
        print("Attempting fallback with MyMemory Translation API")
        url = "https://api.mymemory.translated.net/get"
        params = {
            "q": text,
            "langpair": f"{source_lang}|{target_lang}",
        }
        response = requests.get(url, params=params, timeout=10)
        if response.status_code == 200:
            data = response.json()
            if data and data.get("responseData") and data["responseData"].get("translatedText"):
                print("MyMemory translation successful!")
                return data["responseData"]["translatedText"]
    except Exception as e:
        print(f"Error with MyMemory fallback: {str(e)}")
    
    # Final fallback - return original text with error message
    print("All translation services failed. Returning error message.")
    return f"[Translation services unavailable] {text}"

# --- Helper Functions ---
async def extract_text_from_file(file: UploadFile) -> str:
    """Extracts text content from uploaded files without writing to disk."""
    content = await file.read()
    file_extension = os.path.splitext(file.filename)[1].lower()
    extracted_text = ""

    try:
        if file_extension == '.txt':
            # Process text file directly from bytes
            try:
                extracted_text = content.decode('utf-8')
            except UnicodeDecodeError:
                # Try other common encodings if UTF-8 fails
                for encoding in ['latin-1', 'cp1252', 'utf-16']:
                    try:
                        extracted_text = content.decode(encoding)
                        break
                    except UnicodeDecodeError:
                        continue
        elif file_extension == '.docx':
            try:
                import docx
                from io import BytesIO
                
                # Load DOCX from memory
                doc_stream = BytesIO(content)
                doc = docx.Document(doc_stream)
                extracted_text = '\n'.join([para.text for para in doc.paragraphs])
            except ImportError:
                raise HTTPException(status_code=501, detail="DOCX processing requires 'python-docx' library")
        elif file_extension == '.pdf':
            try:
                import fitz  # PyMuPDF
                from io import BytesIO
                
                # Load PDF from memory
                pdf_stream = BytesIO(content)
                doc = fitz.open(stream=pdf_stream, filetype="pdf")
                
                page_texts = []
                for page in doc:
                    page_texts.append(page.get_text())
                extracted_text = "\n".join(page_texts)
                doc.close()
            except ImportError:
                raise HTTPException(status_code=501, detail="PDF processing requires 'PyMuPDF' library")
        else:
            raise HTTPException(status_code=400, detail=f"Unsupported file type: {file_extension}")

        print(f"Extracted text length: {len(extracted_text)}")
        return extracted_text

    except Exception as e:
        print(f"Error processing file {file.filename}: {e}")
        traceback.print_exc()
        raise HTTPException(status_code=500, detail=f"Error processing document: {str(e)}")

# --- API Endpoints ---
@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
    """Serves the main HTML page."""
    return templates.TemplateResponse("index.html", {"request": request})

@app.post("/translate/text")
async def translate_text_endpoint(request: TranslationRequest):
    global translator, model, tokenizer
    
    print("[DEBUG] /translate/text endpoint called")
    try:
        # Explicitly extract fields from request to ensure they exist
        source_lang = request.source_lang
        target_lang = request.target_lang
        text = request.text
        
        print(f"[DEBUG] Received request: source_lang={source_lang}, target_lang={target_lang}, text={text[:50]}")
        
        # Call our culturally-aware translate_text function
        translation_result = translate_text(text, source_lang, target_lang)
        
        # Check for empty result
        if not translation_result or translation_result.strip() == "":
            print("[DEBUG] Empty translation result received")
            return JSONResponse(
                status_code=500,
                content={"success": False, "error": "Translation returned empty result"}
            )
            
        print(f"[DEBUG] Translation successful: {translation_result[:100]}...")
        return {"success": True, "translated_text": translation_result}
    
    except Exception as e:
        print(f"Critical error in translate_text_endpoint: {str(e)}")
        traceback.print_exc()
        return JSONResponse(
            status_code=500,
            content={"success": False, "error": f"Translation failed: {str(e)}"}
        )

@app.post("/translate/document")
async def translate_document_endpoint(
    file: UploadFile = File(...),
    source_lang: str = Form(...),
    target_lang: str = Form("ar")
):
    """Translates text extracted from an uploaded document."""
    try:
        # Extract text directly from the uploaded file
        extracted_text = await extract_text_from_file(file)
        
        if not extracted_text:
            raise HTTPException(status_code=400, detail="Could not extract any text from the document.")

        # Translate the extracted text
        translated_text = translate_text(extracted_text, source_lang, target_lang)

        return JSONResponse(content={
            "original_filename": file.filename,
            "detected_source_lang": source_lang,
            "translated_text": translated_text
        })

    except HTTPException as http_exc:
        raise http_exc
    except Exception as e:
        print(f"Document translation error: {e}")
        traceback.print_exc()
        raise HTTPException(status_code=500, detail=f"Document translation error: {str(e)}")

# --- Run the server (for local development) ---
if __name__ == "__main__":
    import uvicorn
    uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)