Spaces:
Sleeping
Sleeping
File size: 9,055 Bytes
0318caf 3295268 e5bba07 b3ac5bf 3295268 b3ac5bf 4b46c96 b3ac5bf 4b46c96 b3ac5bf 417a23b 0d53d23 dda8f2a b3ac5bf dda8f2a d35c879 dda8f2a 0318caf d5a8216 dda8f2a d5a8216 d35c879 b307974 d35c879 d5a8216 dda8f2a 417a23b dda8f2a d5a8216 b307974 417a23b dda8f2a b3ac5bf d35c879 b307974 d35c879 b307974 0318caf 4b46c96 417a23b 0d53d23 dda8f2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
# import os
# import gradio as gr
# from langchain.chat_models import ChatOpenAI
# from langchain.prompts import PromptTemplate
# from langchain.chains import LLMChain
# from langchain.memory import ConversationBufferMemory
# # Set OpenAI API Key
# OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
# # Define the template for the chatbot's response
# template = """You are a helpful assistant to answer all user queries.
# {chat_history}
# User: {user_message}
# Chatbot:"""
# # Define the prompt template
# prompt = PromptTemplate(
# input_variables=["chat_history", "user_message"],
# template=template
# )
# # Initialize conversation memory
# memory = ConversationBufferMemory(memory_key="chat_history")
# # Define the LLM chain with the ChatOpenAI model and conversation memory
# llm_chain = LLMChain(
# llm=ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"), # Use 'model' instead of 'model_name'
# prompt=prompt,
# verbose=True,
# memory=memory,
# )
# # Function to get chatbot response
# def get_text_response(user_message, history):
# response = llm_chain.predict(user_message=user_message)
# return response
# # Create a Gradio chat interface
# demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
# if __name__ == "__main__":
# demo.launch()
# import subprocess
# # Run the Bash script that installs dependencies and runs the app
# subprocess.run(['./run.sh'])
# # Rest of your application code can go here
# import subprocess
# import os
# # Ensure the run.sh script has executable permissions
# # subprocess.run(['chmod', '+x', './run.sh'])
# # Run the Bash script that installs dependencies and runs the app
# # subprocess.run(['./run.sh'])
# import gradio as gr
# from langchain_openai import ChatOpenAI
# from langchain.prompts import PromptTemplate
# from langchain.memory import ConversationBufferMemory
# from langchain.chains import RunnableSequence
# # Set OpenAI API Key
# OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
# # Define the template for the chatbot's response
# template = """You are a helpful assistant to answer all user queries.
# {chat_history}
# User: {user_message}
# Chatbot:"""
# # Define the prompt template
# prompt = PromptTemplate(
# input_variables=["chat_history", "user_message"],
# template=template
# )
# # Initialize conversation memory
# memory = ConversationBufferMemory(memory_key="chat_history")
# # Define the LLM (language model)
# llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
# # Define the chain using RunnableSequence (replace LLMChain)
# llm_chain = prompt | llm # Chaining the prompt and the LLM
# # Function to get chatbot response
# def get_text_response(user_message, history):
# inputs = {"chat_history": history, "user_message": user_message}
# response = llm_chain(inputs)
# return response['text']
# # Create a Gradio chat interface
# demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
# if __name__ == "__main__":
# demo.launch()
# import os
# import gradio as gr
# from langchain_openai import ChatOpenAI
# from langchain.prompts import PromptTemplate
# from langchain.memory import ConversationBufferMemory
# from langchain.chains import LLMChain
# # Set OpenAI API Key
# OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
# # Define the template for the chatbot's response
# template = """You are a helpful assistant to answer all user queries.
# {chat_history}
# User: {user_message}
# Chatbot:"""
# # Define the prompt template
# prompt = PromptTemplate(
# input_variables=["chat_history", "user_message"],
# template=template
# )
# # Initialize conversation memory
# memory = ConversationBufferMemory(memory_key="chat_history")
# # Define the LLM (language model) and chain
# llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
# llm_chain = LLMChain(
# llm=llm,
# prompt=prompt,
# verbose=True,
# memory=memory,
# )
# # Function to get chatbot response
# def get_text_response(user_message, history):
# response = llm_chain.predict(user_message=user_message)
# return response
# # Create a Gradio chat interface
# demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
# if __name__ == "__main__":
# demo.launch()
# import os
# import gradio as gr
# from langchain_openai import ChatOpenAI
# from langchain.prompts import PromptTemplate
# from langchain.memory import ConversationBufferMemory
# from langchain.schema import AIMessage, HumanMessage
# from langchain.chains import RunnableSequence
# # Set OpenAI API Key
# OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
# # Define the template for the chatbot's response
# template = """You are a helpful assistant to answer all user queries.
# {chat_history}
# User: {user_message}
# Chatbot:"""
# # Define the prompt template
# prompt = PromptTemplate(
# input_variables=["chat_history", "user_message"],
# template=template
# )
# # Initialize conversation memory (following migration guide)
# memory = ConversationBufferMemory(return_messages=True) # Use return_messages=True for updated usage
# # Define the LLM (language model)
# llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
# # Create the RunnableSequence instead of LLMChain
# llm_sequence = prompt | llm # This pipelines the prompt into the language model
# # Function to get chatbot response
# def get_text_response(user_message, history):
# # Prepare the conversation history
# chat_history = [HumanMessage(content=user_message)]
# # Pass the prompt and history to the language model sequence
# response = llm_sequence.invoke({"chat_history": history, "user_message": user_message})
# return response
# # Create a Gradio chat interface
# demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
# if __name__ == "__main__":
# demo.launch()
# import os
# import gradio as gr
# from langchain_openai import ChatOpenAI
# from langchain.prompts import PromptTemplate
# from langchain.memory import ConversationBufferMemory
# from langchain.schema import AIMessage, HumanMessage
# from langchain import Runnable # Using Runnable instead of RunnableSequence
# # Set OpenAI API Key
# OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
# # Define the template for the chatbot's response
# template = """You are a helpful assistant to answer all user queries.
# {chat_history}
# User: {user_message}
# Chatbot:"""
# # Define the prompt template
# prompt = PromptTemplate(
# input_variables=["chat_history", "user_message"],
# template=template
# )
# # Initialize conversation memory (following migration guide)
# memory = ConversationBufferMemory(return_messages=True) # Use return_messages=True for updated usage
# # Define the LLM (language model)
# llm = ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo")
# # Create the Runnable instead of RunnableSequence
# llm_runnable = Runnable(lambda inputs: prompt.format(**inputs)) | llm
# # Function to get chatbot response
# def get_text_response(user_message, history):
# # Prepare the conversation history
# chat_history = [HumanMessage(content=user_message)]
# # Pass the prompt and history to the language model sequence
# response = llm_runnable.invoke({"chat_history": history, "user_message": user_message})
# return response
# # Create a Gradio chat interface
# demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
# if __name__ == "__main__":
# demo.launch()
import os
import subprocess
import gradio as gr
# Install necessary packages
subprocess.check_call(["pip", "install", "-U", "langchain-openai", "gradio", "langchain-community"])
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory
# Set OpenAI API Key
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
# Define the template for the chatbot's response
template = """You are a helpful assistant to answer all user queries.
{chat_history}
User: {user_message}
Chatbot:"""
# Define the prompt template
prompt = PromptTemplate(
input_variables=["chat_history", "user_message"],
template=template
)
# Initialize conversation memory
memory = ConversationBufferMemory(memory_key="chat_history")
# Define the LLM chain with the ChatOpenAI model and conversation memory
llm_chain = LLMChain(
llm=ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"), # Use 'model' instead of 'model_name'
prompt=prompt,
verbose=True,
memory=memory,
)
# Function to get chatbot response
def get_text_response(user_message, history):
# Prepare the conversation history
chat_history = history + [f"User: {user_message}"]
response = llm_chain.predict(user_message=user_message, chat_history=chat_history)
return response
# Create a Gradio chat interface
demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
if __name__ == "__main__":
demo.launch()
|