File size: 7,754 Bytes
a3e0475
073538f
1fddcd6
073538f
a3e0475
 
073538f
b8a80ad
ab0a991
b8a80ad
 
 
 
 
 
 
073538f
 
 
 
ab0a991
073538f
ab0a991
073538f
a3e0475
073538f
 
 
 
 
 
 
94ac9e7
a3e0475
ad0b8d6
 
 
 
 
 
 
 
ab0a991
073538f
a3e0475
 
 
b8a80ad
ad0b8d6
a3e0475
 
94ac9e7
 
 
 
 
073538f
94ac9e7
073538f
 
 
 
 
a3e0475
073538f
1fddcd6
073538f
 
 
 
ad0b8d6
 
 
073538f
ad0b8d6
 
 
073538f
ad0b8d6
073538f
 
 
ad0b8d6
ab0a991
 
ad0b8d6
073538f
 
 
 
 
 
2a239ae
073538f
 
 
 
 
2a239ae
ad0b8d6
2a239ae
ab0a991
2a239ae
ad0b8d6
b8a80ad
 
ab0a991
 
 
ad0b8d6
2a239ae
 
 
ad0b8d6
2a239ae
 
 
 
073538f
ad0b8d6
2a239ae
073538f
 
 
 
 
 
 
 
 
 
2a239ae
 
073538f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad0b8d6
 
f543f0b
ad0b8d6
 
 
 
 
 
290623e
ad0b8d6
073538f
ad0b8d6
 
073538f
ad0b8d6
 
073538f
 
 
ad0b8d6
b8a80ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline

# Use environment variables for keys
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
    raise ValueError("HF_TOKEN environment variable not set. Please set it in your Hugging Face Space settings.")

NASA_API_KEY = os.getenv("NASA_API_KEY")
if NASA_API_KEY is None:
    raise ValueError("NASA_API_KEY environment variable not set. Please set it in your Hugging Face Space settings.")

# Set up Streamlit UI
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="🚀")

# --- Initialize Session State Variables ---
if "chat_history" not in st.session_state:
    # Initial greeting stored in chat history
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]

if "response_ready" not in st.session_state:
    st.session_state.response_ready = False  # Tracks whether HAL has responded

if "follow_up" not in st.session_state:
    st.session_state.follow_up = ""  # Stores follow-up question

# --- Set Up Model & API Functions ---
model_id = "mistralai/Mistral-7B-Instruct-v0.3"

# Initialize sentiment analysis pipeline with explicit model specification
sentiment_analyzer = pipeline(
    "sentiment-analysis",
    model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
    revision="714eb0f"
)

def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7):
    # Specify task="text-generation" so that the endpoint uses the right model function.
    return HuggingFaceEndpoint(
        repo_id=model_id,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        token=HF_TOKEN,
        task="text-generation"
    )

def get_nasa_apod():
    url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
    response = requests.get(url)
    if response.status_code == 200:
        data = response.json()
        return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
    else:
        return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."

def analyze_sentiment(user_text):
    result = sentiment_analyzer(user_text)[0]
    return result['label']

def predict_action(user_text):
    if "NASA" in user_text or "space" in user_text:
        return "nasa_info"
    return "general_query"

def generate_follow_up(user_text):
    """
    Generates a concise and conversational follow-up question related to the user's input.
    """
    prompt_text = (
        f"Given the user's question: '{user_text}', generate a SHORT and SIMPLE follow-up question. "
        "Make it conversational and friendly. Example: 'Would you like to learn more about the six types of quarks?' "
        "Do NOT provide long explanations—just ask a friendly follow-up question."
    )
    hf = get_llm_hf_inference(max_new_tokens=32, temperature=0.7)
    return hf.invoke(input=prompt_text).strip()

def get_response(system_message, chat_history, user_text, max_new_tokens=256):
    """
    Generates HAL's response in a friendly, conversational manner.
    The prompt instructs the model to ignore previous greetings and focus on the new user question.
    """
    sentiment = analyze_sentiment(user_text)
    action = predict_action(user_text)

    if action == "nasa_info":
        nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
        response = f"**{nasa_title}**\n\n{nasa_explanation}"
        chat_history.append({'role': 'user', 'content': user_text})
        chat_history.append({'role': 'assistant', 'content': response})
        
        follow_up = generate_follow_up(user_text)
        chat_history.append({'role': 'assistant', 'content': follow_up})
        return response, follow_up, chat_history, nasa_url

    hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)

    # Updated prompt: Instruct the model not to repeat previous greetings.
    prompt = PromptTemplate.from_template(
        (
            "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
            "User: {user_text}.\n [/INST]\n"
            "AI: Please answer the user's question without repeating any previous greetings. "
            "Keep your response friendly and conversational, starting with a phrase like "
            "'Certainly!', 'Of course!', or 'Great question!'.\nHAL:"
        )
    )
    chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
    response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
    response = response.split("HAL:")[-1].strip()

    chat_history.append({'role': 'user', 'content': user_text})
    chat_history.append({'role': 'assistant', 'content': response})

    if sentiment == "NEGATIVE":
        response = "I'm here to help. Let me know what I can do for you. 😊"

    follow_up = generate_follow_up(user_text)
    chat_history.append({'role': 'assistant', 'content': follow_up})

    return response, follow_up, chat_history, None

# --- Chat UI ---
st.title("🚀 HAL - Your NASA AI Assistant")
st.markdown("🌌 *Ask me about space, NASA, and beyond!*")

# Sidebar: Reset Chat
if st.sidebar.button("Reset Chat"):
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
    st.session_state.response_ready = False
    st.session_state.follow_up = ""
    st.experimental_rerun()

# Custom Chat Styling
st.markdown("""
    <style>
    .user-msg {
        background-color: #0078D7;
        color: white;
        padding: 10px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
    }
    .assistant-msg {
        background-color: #333333;
        color: white;
        padding: 10px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
    }
    .container {
        display: flex;
        flex-direction: column;
        align-items: flex-start;
    }
    @media (max-width: 600px) {
        .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
    }
    </style>
""", unsafe_allow_html=True)

# Chat History Display
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
    if message["role"] == "user":
        st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
    else:
        st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)

# --- Single Input Box for Both Initial and Follow-Up Messages ---
user_input = st.chat_input("Type your message here...")  # Only ONE chat_input()

if user_input:
    response, follow_up, st.session_state.chat_history, image_url = get_response(
        system_message="You are a helpful AI assistant.",
        user_text=user_input,
        chat_history=st.session_state.chat_history
    )

    st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)

    if image_url:
        st.image(image_url, caption="NASA Image of the Day")

    st.session_state.follow_up = follow_up
    st.session_state.response_ready = True

if st.session_state.response_ready and st.session_state.follow_up:
    st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {st.session_state.follow_up}</div>", unsafe_allow_html=True)
    st.session_state.response_ready = False