Spaces:
Sleeping
Sleeping
File size: 7,754 Bytes
a3e0475 073538f 1fddcd6 073538f a3e0475 073538f b8a80ad ab0a991 b8a80ad 073538f ab0a991 073538f ab0a991 073538f a3e0475 073538f 94ac9e7 a3e0475 ad0b8d6 ab0a991 073538f a3e0475 b8a80ad ad0b8d6 a3e0475 94ac9e7 073538f 94ac9e7 073538f a3e0475 073538f 1fddcd6 073538f ad0b8d6 073538f ad0b8d6 073538f ad0b8d6 073538f ad0b8d6 ab0a991 ad0b8d6 073538f 2a239ae 073538f 2a239ae ad0b8d6 2a239ae ab0a991 2a239ae ad0b8d6 b8a80ad ab0a991 ad0b8d6 2a239ae ad0b8d6 2a239ae 073538f ad0b8d6 2a239ae 073538f 2a239ae 073538f ad0b8d6 f543f0b ad0b8d6 290623e ad0b8d6 073538f ad0b8d6 073538f ad0b8d6 073538f ad0b8d6 b8a80ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import os
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
# Use environment variables for keys
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("HF_TOKEN environment variable not set. Please set it in your Hugging Face Space settings.")
NASA_API_KEY = os.getenv("NASA_API_KEY")
if NASA_API_KEY is None:
raise ValueError("NASA_API_KEY environment variable not set. Please set it in your Hugging Face Space settings.")
# Set up Streamlit UI
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="🚀")
# --- Initialize Session State Variables ---
if "chat_history" not in st.session_state:
# Initial greeting stored in chat history
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
if "response_ready" not in st.session_state:
st.session_state.response_ready = False # Tracks whether HAL has responded
if "follow_up" not in st.session_state:
st.session_state.follow_up = "" # Stores follow-up question
# --- Set Up Model & API Functions ---
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
# Initialize sentiment analysis pipeline with explicit model specification
sentiment_analyzer = pipeline(
"sentiment-analysis",
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
revision="714eb0f"
)
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7):
# Specify task="text-generation" so that the endpoint uses the right model function.
return HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token=HF_TOKEN,
task="text-generation"
)
def get_nasa_apod():
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
else:
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."
def analyze_sentiment(user_text):
result = sentiment_analyzer(user_text)[0]
return result['label']
def predict_action(user_text):
if "NASA" in user_text or "space" in user_text:
return "nasa_info"
return "general_query"
def generate_follow_up(user_text):
"""
Generates a concise and conversational follow-up question related to the user's input.
"""
prompt_text = (
f"Given the user's question: '{user_text}', generate a SHORT and SIMPLE follow-up question. "
"Make it conversational and friendly. Example: 'Would you like to learn more about the six types of quarks?' "
"Do NOT provide long explanations—just ask a friendly follow-up question."
)
hf = get_llm_hf_inference(max_new_tokens=32, temperature=0.7)
return hf.invoke(input=prompt_text).strip()
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
"""
Generates HAL's response in a friendly, conversational manner.
The prompt instructs the model to ignore previous greetings and focus on the new user question.
"""
sentiment = analyze_sentiment(user_text)
action = predict_action(user_text)
if action == "nasa_info":
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
response = f"**{nasa_title}**\n\n{nasa_explanation}"
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, nasa_url
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
# Updated prompt: Instruct the model not to repeat previous greetings.
prompt = PromptTemplate.from_template(
(
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
"User: {user_text}.\n [/INST]\n"
"AI: Please answer the user's question without repeating any previous greetings. "
"Keep your response friendly and conversational, starting with a phrase like "
"'Certainly!', 'Of course!', or 'Great question!'.\nHAL:"
)
)
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
response = response.split("HAL:")[-1].strip()
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
if sentiment == "NEGATIVE":
response = "I'm here to help. Let me know what I can do for you. 😊"
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, None
# --- Chat UI ---
st.title("🚀 HAL - Your NASA AI Assistant")
st.markdown("🌌 *Ask me about space, NASA, and beyond!*")
# Sidebar: Reset Chat
if st.sidebar.button("Reset Chat"):
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
st.session_state.response_ready = False
st.session_state.follow_up = ""
st.experimental_rerun()
# Custom Chat Styling
st.markdown("""
<style>
.user-msg {
background-color: #0078D7;
color: white;
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
}
.assistant-msg {
background-color: #333333;
color: white;
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
}
.container {
display: flex;
flex-direction: column;
align-items: flex-start;
}
@media (max-width: 600px) {
.user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
}
</style>
""", unsafe_allow_html=True)
# Chat History Display
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# --- Single Input Box for Both Initial and Follow-Up Messages ---
user_input = st.chat_input("Type your message here...") # Only ONE chat_input()
if user_input:
response, follow_up, st.session_state.chat_history, image_url = get_response(
system_message="You are a helpful AI assistant.",
user_text=user_input,
chat_history=st.session_state.chat_history
)
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
if image_url:
st.image(image_url, caption="NASA Image of the Day")
st.session_state.follow_up = follow_up
st.session_state.response_ready = True
if st.session_state.response_ready and st.session_state.follow_up:
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {st.session_state.follow_up}</div>", unsafe_allow_html=True)
st.session_state.response_ready = False
|