File size: 11,011 Bytes
685d414 0d24647 97778aa 031a7f3 b8d465b 48ade8d 896ca54 310ebea db5919c 0d24647 07cb903 5753bc2 b8d465b aa10e55 310ebea e3bea0f 5753bc2 b66d512 db5919c b66d512 425eec5 3c8678d db5919c e3bea0f 62246c7 e3bea0f 1668d21 e3bea0f 3c8678d 5753bc2 ade86df 5753bc2 db5919c 5753bc2 ade86df 5753bc2 ade86df 5753bc2 0d24647 e3bea0f 3f87519 e3bea0f 425eec5 02ebd05 db5919c 3f87519 db5919c 5753bc2 02ebd05 db5919c 3f87519 5753bc2 02ebd05 5753bc2 db5919c 3f87519 c10cafd 02ebd05 db5919c 3f87519 02ebd05 db5919c aa10e55 3f87519 0d24647 5753bc2 3f87519 02ebd05 b8d465b 0d24647 e3bea0f 0d24647 e3bea0f 0d24647 e3bea0f 0d24647 e3bea0f 0d24647 74245b5 a727789 5753bc2 e3bea0f 62246c7 5753bc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import gradio as gr
import google.generativeai as genai
import numpy as np
import re
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download, login
import logging
import os
import spaces
import warnings
from snac import SNAC
from dotenv import load_dotenv
load_dotenv()
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=RuntimeWarning)
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
model = None
tokenizer = None
snac_model = None
@spaces.GPU()
def load_model():
global model, tokenizer, snac_model
try:
logger.info("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)
if snac_model is None:
raise ValueError("Failed to load SNAC model")
logger.info("Loading Orpheus model...")
model_name = "canopylabs/orpheus-3b-0.1-ft"
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
if not hf_token:
raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
login(token=hf_token)
snapshot_download(
repo_id=model_name,
use_auth_token=hf_token,
allow_patterns=["config.json", "*.safetensors", "model.safetensors.index.json", "vocab.json", "merges.txt", "tokenizer.json"],
ignore_patterns=["optimizer.pt", "pytorch_model.bin", "training_args.bin", "scheduler.pt"]
)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
if tokenizer is None:
raise ValueError("Failed to load tokenizer")
logger.info(f"Orpheus model and tokenizer loaded to {device}")
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise
@spaces.GPU()
def generate_podcast_script(api_key, content, uploaded_file, duration, num_hosts):
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel('gemini-2.5-pro-preview-03-25')
combined_content = content or ""
if uploaded_file:
file_content = uploaded_file.read().decode('utf-8')
combined_content += "\n" + file_content if combined_content else file_content
prompt = f"""
Create a podcast script for {'one person' if num_hosts == 1 else 'two people'} discussing:
{combined_content}
Duration: {duration}. Include natural speech, humor, and occasional off-topic thoughts.
Use speech fillers like um, ah. Vary emotional tone.
Format: {'Monologue' if num_hosts == 1 else 'Alternating dialogue'} without speaker labels.
Separate {'paragraphs' if num_hosts == 1 else 'lines'} with blank lines.
Use emotion tags in angle brackets: <laugh>, <sigh>, <chuckle>, <cough>, <sniffle>, <groan>, <yawn>, <gasp>.
Example: "I can't believe I stayed up all night <yawn> only to find out the meeting was canceled <groan>."
Ensure content flows naturally and stays on topic. Match the script length to {duration}.
"""
response = model.generate_content(prompt)
return re.sub(r'[^a-zA-Z0-9\s.,?!<>]', '', response.text)
except Exception as e:
logger.error(f"Error generating podcast script: {str(e)}")
raise
def process_prompt(prompt, voice, tokenizer, device):
prompt = f"{voice}: {prompt}"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
start_token = torch.tensor([[128259]], dtype=torch.int64)
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
attention_mask = torch.ones_like(modified_input_ids)
return modified_input_ids.to(device), attention_mask.to(device)
def parse_output(generated_ids):
token_to_find = 128257
token_to_remove = 128258
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
else:
cropped_tensor = generated_ids
processed_rows = []
for row in cropped_tensor:
masked_row = row[row != token_to_remove]
processed_rows.append(masked_row)
code_lists = []
for row in processed_rows:
row_length = row.size(0)
new_length = (row_length // 7) * 7
trimmed_row = row[:new_length]
trimmed_row = [t - 128266 for t in trimmed_row]
code_lists.append(trimmed_row)
return code_lists[0]
def redistribute_codes(code_list, snac_model):
try:
device = next(snac_model.parameters()).device
layer_1, layer_2, layer_3 = [], [], []
for i in range((len(code_list)+1)//7):
layer_1.append(code_list[7*i])
layer_2.append(code_list[7*i+1]-4096)
layer_3.append(code_list[7*i+2]-(2*4096))
layer_3.append(code_list[7*i+3]-(3*4096))
layer_2.append(code_list[7*i+4]-(4*4096))
layer_3.append(code_list[7*i+5]-(5*4096))
layer_3.append(code_list[7*i+6]-(6*4096))
codes = [
torch.tensor(layer_1, device=device).unsqueeze(0),
torch.tensor(layer_2, device=device).unsqueeze(0),
torch.tensor(layer_3, device=device).unsqueeze(0)
]
audio_hat = snac_model.decode(codes)
return audio_hat.detach().squeeze().cpu().numpy()
except Exception as e:
logger.error(f"Error in redistribute_codes: {e}", exc_info=True)
return None
@spaces.GPU()
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
if not text.strip():
logger.warning("Empty text input. Skipping speech generation.")
return None
try:
progress(0.1, "Processing text...")
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
logger.info(f"Input shape: {input_ids.shape}")
progress(0.3, "Generating speech tokens...")
with torch.no_grad():
generated_ids = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
num_return_sequences=1,
eos_token_id=128258,
)
logger.info(f"Generated shape: {generated_ids.shape}")
progress(0.6, "Processing speech tokens...")
code_list = parse_output(generated_ids)
logger.info(f"Code list length: {len(code_list)}")
if not code_list:
logger.warning("No valid code list generated. Skipping audio conversion.")
return None
progress(0.8, "Converting to audio...")
audio_samples = redistribute_codes(code_list, snac_model)
if audio_samples is None:
logger.warning("Audio samples is None.")
return None
if len(audio_samples) == 0:
logger.warning("Audio samples is empty.")
return None
logger.info(f"Audio samples shape: {audio_samples.shape}")
return (24000, audio_samples) # Return sample rate and audio
except Exception as e:
logger.error(f"Error generating speech: {e}", exc_info=True)
return None
@spaces.GPU()
def render_podcast(api_key, script, voice1, voice2, num_hosts):
try:
lines = [line for line in script.split('\n') if line.strip()]
audio_segments = []
for i, line in enumerate(lines):
voice = voice1 if num_hosts == 1 or i % 2 == 0 else voice2
try:
result = generate_speech(line, voice, temperature=0.6, top_p=0.95, repetition_penalty=1.1, max_new_tokens=1200)
if result is not None:
sample_rate, audio = result
audio_segments.append(audio)
except Exception as e:
logger.error(f"Error processing audio segment: {str(e)}")
if not audio_segments:
logger.warning("No valid audio segments were generated.")
return (24000, np.zeros(24000, dtype=np.float32))
podcast_audio = np.concatenate(audio_segments)
podcast_audio = np.clip(podcast_audio, -1, 1)
podcast_audio = (podcast_audio * 32767).astype(np.int16)
return (24000, podcast_audio)
except Exception as e:
logger.error(f"Error rendering podcast: {str(e)}")
raise
with gr.Blocks() as demo:
gr.Markdown("# AI Podcast Generator")
api_key_input = gr.Textbox(label="Enter your Gemini API Key", type="password")
with gr.Row():
content_input = gr.Textbox(label="Paste your content (optional)", lines=4)
document_upload = gr.File(label="Upload Document (optional)")
duration = gr.Radio(["1-5 min", "5-10 min", "10-15 min"], label="Estimated podcast duration", value="1-5 min")
num_hosts = gr.Radio([1, 2], label="Number of podcast hosts", value=2)
voice_options = ["tara", "leah", "jess", "leo", "dan", "mia", "zac", "zoe"]
voice1_select = gr.Dropdown(label="Select Voice 1", choices=voice_options, value="tara")
voice2_select = gr.Dropdown(label="Select Voice 2", choices=voice_options, value="leo")
generate_btn = gr.Button("Generate Script")
script_output = gr.Textbox(label="Generated Script", lines=10)
render_btn = gr.Button("Render Podcast")
audio_output = gr.Audio(label="Generated Podcast")
generate_btn.click(generate_podcast_script,
inputs=[api_key_input, content_input, document_upload, duration, num_hosts],
outputs=script_output)
render_btn.click(render_podcast,
inputs=[api_key_input, script_output, voice1_select, voice2_select, num_hosts],
outputs=audio_output)
num_hosts.change(lambda x: gr.update(visible=x == 2),
inputs=[num_hosts],
outputs=[voice2_select])
if __name__ == "__main__":
try:
load_model()
demo.queue().launch(share=False, ssr_mode=False)
except Exception as e:
logger.error(f"Error launching the application: {str(e)}") |