File size: 6,923 Bytes
d6e219c
f1948f2
 
e185e86
e032990
b54664e
0ff864f
ec5f81e
4dccd71
 
e185e86
e032990
37dfdf9
e032990
 
a9d4250
e185e86
aeed86a
 
 
e185e86
 
 
aeed86a
 
 
 
 
 
 
 
 
 
 
e185e86
 
aeed86a
 
e185e86
aeed86a
 
 
 
 
 
 
 
 
 
 
e185e86
 
 
ec5f81e
e185e86
23bb2d2
4472a1d
73582bd
 
b98a1ee
 
 
e032990
 
4472a1d
ec5f81e
38e8859
dcb0de6
ec5f81e
 
43095bd
23bb2d2
e032990
 
 
 
 
 
 
 
73582bd
43095bd
e032990
 
38e8859
e032990
a6c0cf2
2dda625
e032990
 
ec5f81e
 
 
e032990
ec5f81e
 
2dda625
e185e86
e032990
ec5f81e
 
 
e032990
ec5f81e
 
 
a5405aa
d88c331
036dae9
 
a5405aa
 
ec5f81e
036dae9
 
2dc9dfb
 
 
 
 
 
 
 
036dae9
 
2dc9dfb
036dae9
ec5f81e
 
 
 
 
 
 
e032990
 
 
 
 
 
 
 
 
a28ef35
ab8c96f
a6c0cf2
ec5f81e
e032990
a6c0cf2
e032990
ab8c96f
4292d1b
2dda625
cbd8c88
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import gradio as gr
import torch
import numpy as np
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers import RobertaForSequenceClassification, RobertaTokenizer
from motif_tagging import detect_motifs

# custom fine-tuned sentiment model
sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment")
sentiment_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-sentiment")

# Load abuse pattern model
model_name ="SamanthaStorm/autotrain-jlpi4-mllvp"
model = RobertaForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
tokenizer = RobertaTokenizer.from_pretrained(model_name, trust_remote_code=True)

LABELS = [
    "blame shifting", "contradictory statements", "control", "dismissiveness",
    "gaslighting", "guilt tripping", "insults", "obscure language",
    "projection", "recovery phase", "threat"
]

THRESHOLDS = {
    "blame shifting": 0.23,
    "contradictory statements": 0.25,
    "control": 0.40,
    "dismissiveness": 0.45,
    "gaslighting": 0.30,
    "guilt tripping": 0.20,
    "insults": 0.34,
    "obscure language": 0.25,
    "projection": 0.35,
    "recovery phase": 0.25,
    "threat": 0.25
}

PATTERN_LABELS = LABELS

EXPLANATIONS = {
    "blame shifting": "Blame-shifting is when one person redirects responsibility onto someone else to avoid accountability.",
    "contradictory statements": "Contradictory statements confuse the listener by flipping positions or denying previous claims.",
    "control": "Control restricts another person’s autonomy through coercion, manipulation, or threats.",
    "dismissiveness": "Dismissiveness is belittling or disregarding another person’s feelings, needs, or opinions.",
    "gaslighting": "Gaslighting involves making someone question their own reality, memory, or perceptions.",
    "guilt tripping": "Guilt-tripping uses guilt to manipulate someone’s actions or decisions.",
    "insults": "Insults are derogatory or demeaning remarks meant to shame, belittle, or hurt someone.",
    "obscure language": "Obscure language manipulates through complexity, vagueness, or superiority to confuse the other person.",
    "projection": "Projection accuses someone else of the very behaviors or intentions the speaker is exhibiting.",
    "recovery phase": "Recovery phase statements attempt to soothe or reset tension without acknowledging harm or change.",
    "threat": "Threats use fear of harm (physical, emotional, or relational) to control or intimidate someone."
}

PATTERN_WEIGHTS = {
    "gaslighting": 1.3, "mockery": 1.2, "control": 1.2, "dismissiveness": 0.8
}

def custom_sentiment(text):
    inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
    with torch.no_grad():
        outputs = sentiment_model(**inputs)
        probs = torch.nn.functional.softmax(outputs.logits, dim=1)
        label_idx = torch.argmax(probs).item()
    label_map = {0: "supportive", 1: "undermining"}
    return {"label": label_map[label_idx], "score": probs[0][label_idx].item()}

def calculate_abuse_level(scores, thresholds, motif_hits=None, flag_multiplier=1.0):
    weighted_scores = [score * PATTERN_WEIGHTS.get(label, 1.0) for label, score in zip(LABELS, scores) if score > thresholds[label]]
    base_score = round(np.mean(weighted_scores) * 100, 2) if weighted_scores else 0.0
    base_score *= flag_multiplier
    return min(base_score, 100.0)

def interpret_abuse_level(score):
    if score > 80:
        return "Extreme / High Risk"
    elif score > 60:
        return "Severe / Harmful Pattern Present"
    elif score > 40:
        return "Likely Abuse"
    elif score > 20:
        return "Mild Concern"
    return "Very Low / Likely Safe"

def analyze_single_message(text, thresholds, motif_flags):
    motif_hits, matched_phrases = detect_motifs(text)
    sentiment = custom_sentiment(text)
    adjusted_thresholds = {k: v * 0.8 for k, v in thresholds.items()} if sentiment['label'] == "undermining" else thresholds.copy()
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
    with torch.no_grad():
        outputs = model(**inputs)
    scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
    threshold_labels = [label for label, score in zip(LABELS, scores) if score > adjusted_thresholds[label]]
    phrase_labels = [label for label, _ in matched_phrases]
    pattern_labels_used = list(set(threshold_labels + phrase_labels))
    abuse_level = calculate_abuse_level(scores, adjusted_thresholds, motif_hits)
    top_patterns = sorted([(label, score) for label, score in zip(LABELS, scores)], key=lambda x: x[1], reverse=True)[:2]
    return abuse_level, pattern_labels_used, top_patterns

def analyze_composite(msg1, msg2, msg3, flags):
    thresholds = THRESHOLDS
    messages = [msg1, msg2, msg3]
    active_messages = [m for m in messages if m.strip()]
    if not active_messages:
        return "Please enter at least one message."

    results = [analyze_single_message(m, thresholds, flags) for m in active_messages]
    abuse_scores = [r[0] for r in results]

    base_score = sum(abuse_scores) / len(abuse_scores)
    label_sets = [[label for label, _ in r[2]] for r in results]
    label_counts = {label: sum(label in s for s in label_sets) for label in set().union(*label_sets)}
    top_labels = sorted(label_counts.items(), key=lambda x: x[1], reverse=True)[:2]
    top_explanations = [EXPLANATIONS.get(label, "") for label, _ in top_labels]

    # Adjust flag-based weight relative to number of messages
    danger_weight = 5
    flag_weights = {
    "They've threatened harm": 6,
    "They isolate me": 5,
    "I’ve changed my behavior out of fear": 4,
    "They monitor/follow me": 4,
    "I feel unsafe when alone with them": 6
}
flag_boost = sum(flag_weights.get(f, 3) for f in flags) / len(active_messages)
    composite_score = min(base_score + flag_boost, 100)
    composite_score = round(composite_score, 2)
    composite_score = round(composite_score)

    result = f"These messages show patterns of {', '.join(label for label, _ in top_labels)} and are estimated to be {composite_score}% likely abusive."
    for expl in top_explanations:
        if expl:
            result += f"\n• {expl}"
    return result

textbox_inputs = [
    gr.Textbox(label="Message 1"),
    gr.Textbox(label="Message 2"),
    gr.Textbox(label="Message 3")
]

checkboxes = gr.CheckboxGroup(label="Contextual Flags", choices=[
    "They've threatened harm", "They isolate me", "I’ve changed my behavior out of fear",
    "They monitor/follow me", "I feel unsafe when alone with them"
])

iface = gr.Interface(
    fn=analyze_composite,
    inputs=textbox_inputs + [checkboxes],
    outputs=gr.Textbox(label="Results"),
    title="Abuse Pattern Detector (Multi-Message)",
    allow_flagging="manual"
)

if __name__ == "__main__":
    iface.launch()