Spaces:
Running
Running
File size: 6,403 Bytes
d6e219c f1948f2 e185e86 e032990 b54664e 0ff864f ec5f81e 4dccd71 e185e86 e032990 dd2f06d e032990 a9d4250 e185e86 ec5f81e e185e86 ec5f81e e185e86 e032990 ec5f81e e032990 e185e86 ec5f81e e185e86 23bb2d2 4472a1d 73582bd b98a1ee e032990 4472a1d ec5f81e 38e8859 dcb0de6 ec5f81e 43095bd 23bb2d2 e032990 73582bd 43095bd e032990 38e8859 e032990 a6c0cf2 2dda625 e032990 ec5f81e e032990 ec5f81e 2dda625 e185e86 e032990 ec5f81e e032990 ec5f81e e032990 a28ef35 ab8c96f a6c0cf2 ec5f81e e032990 a6c0cf2 e032990 ab8c96f 4292d1b 2dda625 cbd8c88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import gradio as gr
import torch
import numpy as np
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from transformers import RobertaForSequenceClassification, RobertaTokenizer
from motif_tagging import detect_motifs
# custom fine-tuned sentiment model
sentiment_model = AutoModelForSequenceClassification.from_pretrained("SamanthaStorm/tether-sentiment")
sentiment_tokenizer = AutoTokenizer.from_pretrained("SamanthaStorm/tether-sentiment")
# Load abuse pattern model
model_name = "SamanthaStorm/autotrain-c1un8-p8vzo"
model = RobertaForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
tokenizer = RobertaTokenizer.from_pretrained(model_name, trust_remote_code=True)
LABELS = [
"gaslighting", "mockery", "dismissiveness", "control", "guilt_tripping", "apology_baiting", "blame_shifting", "projection",
"contradictory_statements", "manipulation", "deflection", "insults", "obscure_formal", "recovery_phase"
]
THRESHOLDS = {
"gaslighting": 0.25, "mockery": 0.15, "dismissiveness": 0.45, "control": 0.43, "guilt_tripping": 0.15,
"apology_baiting": 0.2, "blame_shifting": 0.23, "projection": 0.50, "contradictory_statements": 0.25,
"manipulation": 0.25, "deflection": 0.30, "insults": 0.34, "obscure_formal": 0.25, "recovery_phase": 0.25
}
EXPLANATIONS = {
"gaslighting": "Gaslighting involves making someone question their own reality or perceptions...",
"blame_shifting": "Blame-shifting is when one person redirects the responsibility...",
"projection": "Projection involves accusing the victim of behaviors the abuser exhibits.",
"dismissiveness": "Dismissiveness is belittling or disregarding another person’s feelings.",
"mockery": "Mockery ridicules someone in a hurtful, humiliating way.",
"recovery_phase": "Recovery phase dismisses someone's emotional healing process.",
"insults": "Insults are derogatory remarks aimed at degrading someone.",
"apology_baiting": "Apology-baiting manipulates victims into apologizing for abuser's behavior.",
"deflection": "Deflection avoids accountability by redirecting blame.",
"control": "Control restricts autonomy through manipulation or coercion.",
"guilt_tripping": "Guilt-tripping uses guilt to manipulate someone’s actions.",
"manipulation": "Manipulation deceives to influence or control outcomes.",
"obscure_formal": "Obscure/formal language manipulates through confusion or superiority."
}
PATTERN_WEIGHTS = {
"gaslighting": 1.3, "mockery": 1.2, "control": 1.2, "dismissiveness": 0.8
}
def custom_sentiment(text):
inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = sentiment_model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
label_idx = torch.argmax(probs).item()
label_map = {0: "supportive", 1: "undermining"}
return {"label": label_map[label_idx], "score": probs[0][label_idx].item()}
def calculate_abuse_level(scores, thresholds, motif_hits=None, flag_multiplier=1.0):
weighted_scores = [score * PATTERN_WEIGHTS.get(label, 1.0) for label, score in zip(LABELS, scores) if score > thresholds[label]]
base_score = round(np.mean(weighted_scores) * 100, 2) if weighted_scores else 0.0
base_score *= flag_multiplier
return min(base_score, 100.0)
def interpret_abuse_level(score):
if score > 80:
return "Extreme / High Risk"
elif score > 60:
return "Severe / Harmful Pattern Present"
elif score > 40:
return "Likely Abuse"
elif score > 20:
return "Mild Concern"
return "Very Low / Likely Safe"
def analyze_single_message(text, thresholds, motif_flags):
motif_hits, matched_phrases = detect_motifs(text)
sentiment = custom_sentiment(text)
adjusted_thresholds = {k: v * 0.8 for k, v in thresholds.items()} if sentiment['label'] == "undermining" else thresholds.copy()
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
threshold_labels = [label for label, score in zip(LABELS, scores) if score > adjusted_thresholds[label]]
phrase_labels = [label for label, _ in matched_phrases]
pattern_labels_used = list(set(threshold_labels + phrase_labels))
abuse_level = calculate_abuse_level(scores, adjusted_thresholds, motif_hits)
top_patterns = sorted([(label, score) for label, score in zip(LABELS, scores)], key=lambda x: x[1], reverse=True)[:2]
return abuse_level, pattern_labels_used, top_patterns
def analyze_composite(msg1, msg2, msg3, flags):
thresholds = THRESHOLDS
messages = [msg1, msg2, msg3]
active_messages = [m for m in messages if m.strip()]
if not active_messages:
return "Please enter at least one message."
flag_multiplier = 1 + (0.1 * len(flags)) # each checked flag increases weight by 10%
results = [analyze_single_message(m, thresholds, flags) for m in active_messages]
abuse_scores = [r[0] for r in results]
composite_score = round(sum(abuse_scores) / len(abuse_scores), 2)
label_sets = [label for result in results for label in result[1]]
label_counts = {label: label_sets.count(label) for label in set(label_sets)}
top_labels = sorted(label_counts.items(), key=lambda x: x[1], reverse=True)[:2]
top_explanations = [EXPLANATIONS.get(label, "") for label, _ in top_labels]
result = f"These messages show patterns of {', '.join(label for label, _ in top_labels)} and are estimated to be {composite_score}% likely abusive."
for expl in top_explanations:
if expl:
result += f"\n• {expl}"
return result
textbox_inputs = [
gr.Textbox(label="Message 1"),
gr.Textbox(label="Message 2"),
gr.Textbox(label="Message 3")
]
checkboxes = gr.CheckboxGroup(label="Contextual Flags", choices=[
"They've threatened harm", "They isolate me", "I’ve changed my behavior out of fear",
"They monitor/follow me", "I feel unsafe when alone with them"
])
iface = gr.Interface(
fn=analyze_composite,
inputs=textbox_inputs + [checkboxes],
outputs=gr.Textbox(label="Results"),
title="Abuse Pattern Detector (Multi-Message)",
allow_flagging="manual"
)
if __name__ == "__main__":
iface.launch() |