Spaces:
Build error
Build error
File size: 10,278 Bytes
ef7a878 32f88c0 b22a6ec 351252d b22a6ec 1de6e28 dbca570 1bc35a1 c5571fa f0c35fe d4b107b cf8326e 85002a1 ad6d7c2 85002a1 c5571fa dbca570 2f03bd6 ad6d7c2 dbca570 ad6d7c2 cf8326e 8c6ad91 501c4cf 5c44de8 cf8326e 2be6ffe cf8326e 1137662 8c6ad91 ad6d7c2 dbca570 1de6e28 85002a1 6a801d6 85002a1 ad6d7c2 b6f831c 2fb8a5f 6898666 1bc35a1 2fb8a5f 1bc35a1 85002a1 9e87cc4 85002a1 1de6e28 1bc35a1 d43021e 6834d8b 2fb8a5f 1bc35a1 6834d8b 2fb8a5f 6834d8b 2fb8a5f 6834d8b d43021e 2fb8a5f d43021e 501c4cf d43021e 501c4cf 5c44de8 e1d8262 d43021e b992645 32f88c0 ad6d7c2 32f88c0 361f8d0 5c44de8 85002a1 361f8d0 5c44de8 361f8d0 4a5b260 85002a1 071df52 361f8d0 071df52 85002a1 9e87cc4 2fb8a5f 6ec642d 2fb8a5f 6ec642d 1de6e28 2fb8a5f 9e722fb 8c6ad91 9e722fb 2fb8a5f 071df52 b992645 2fb8a5f 6ec642d 2fb8a5f 6ec642d 2fb8a5f 1de6e28 9e722fb b992645 8c6ad91 badcd8d 2fb8a5f 1de6e28 55eafca 9e722fb 8c6ad91 9e722fb 8c6ad91 6ec642d 9e722fb 2fb8a5f 9e722fb 2fb8a5f 6ec642d 9e722fb b992645 9e722fb 1de6e28 8c6ad91 b992645 9e722fb d262ec1 9e722fb 8c6ad91 d4b107b 2fb8a5f 6ec642d f7e87b9 b992645 9e722fb b6f831c 8c6ad91 b992645 9e722fb f7e87b9 7ef26c1 8c6ad91 d4b107b f7e87b9 9e722fb 8c6ad91 f7e87b9 2fb8a5f 6ec642d 9e722fb b992645 9e722fb 1de6e28 f7e87b9 b992645 9e722fb 2d9e081 8c6ad91 9e722fb 2fb8a5f 8ec53db 2fb8a5f 6a67784 ad6d7c2 85002a1 5ca37ae b6f831c 1de6e28 5ca37ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# app.py
# Version: 1.07 (08.24.24), ALPHA
#---------------------------------------------------------------------------------------------------------------------------------------------
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#---------------------------------------------------------------------------------------------------------------------------------------------
import spaces
import gradio as gr
from PIL import Image
from pydub import AudioSegment
#from scipy.io import wavfile
import os
import re
import time
import warnings
#import datetime
import subprocess
from pathlib import Path
import tempfile
from fpdf import FPDF
import psutil
from gpuinfo import GPUInfo
#import pandas as pd
#import csv
import numpy as np
import torch
import torchaudio
import torchaudio.transforms as transforms
from transformers import pipeline, AutoModel
import spacy
import networkx as nx
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
warnings.filterwarnings("ignore")
# ------------header section------------
HEADER_INFO = """
# WEB APP ✨| Norwegian WHISPER Model
Switch Work [Transkribering av lydfiler til norsk skrift]
""".strip()
LOGO = "https://cdn-lfs-us-1.huggingface.co/repos/fe/3b/fe3bd7c8beece8b087fddcc2278295e7f56c794c8dcf728189f4af8bddc585e1/5112f67899d65e9797a7a60d05f983cf2ceefbe2f7cba74eeca93a4e7061becc?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27logo.png%3B+filename%3D%22logo.png%22%3B&response-content-type=image%2Fpng&Expires=1724881270&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTcyNDg4MTI3MH19LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmh1Z2dpbmdmYWNlLmNvL3JlcG9zL2ZlLzNiL2ZlM2JkN2M4YmVlY2U4YjA4N2ZkZGNjMjI3ODI5NWU3ZjU2Yzc5NGM4ZGNmNzI4MTg5ZjRhZjhiZGRjNTg1ZTEvNTExMmY2Nzg5OWQ2NWU5Nzk3YTdhNjBkMDVmOTgzY2YyY2VlZmJlMmY3Y2JhNzRlZWNhOTNhNGU3MDYxYmVjYz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPSoifV19&Signature=ipo8wTjtC7R0QHbo%7Et9Q5CTaI3cZKxM0beajqlApfm5fh7%7EW-FULu1-ISL5bkowBSw9m5RdGoyOqj336OSS5fPD%7EnzYNmAMd3T5bx2-KfCDh6jz0HVECt8S7HeIu%7El2TetxrzL2tdHw4Np4Zpa8JKOnNnje24fF0Nr-xUS2dvPJf54rIL70-iWVXXhw8owxt0%7E1CJsUHC9oibp9B4mZcyWvvRldhDopiQBYELusZdTW3qvtTBK083WP3gHQxadQp8UDVTPZ0g3i112G2NfFJB%7Epa70XeN8m3E6ORx6pVH%7EW6IzjvmapWSF-tmXH-26wYG8aof%7E1U7enbR1w2QBTS-g__&Key-Pair-Id=K24J24Z295AEI9"
SIDEBAR_INFO = f"""
<div align="center">
<img src="{LOGO}" style="width: 100%; height: auto;"/>
</div>
"""
# ------------transcribe section------------
# ============ORIGINAL============[convert m4a audio to wav]
@spaces.GPU()
def convert_to_wav(audio_file):
audio = AudioSegment.from_file(audio_file, format="m4a")
wav_file = "temp.wav"
audio.export(wav_file, format="wav")
return wav_file
# ================================[------------------------]
pipe = pipeline("automatic-speech-recognition", model="NbAiLab/nb-whisper-large", chunk_length_s=30, generate_kwargs={'task': 'transcribe', 'language': 'no'})
@spaces.GPU()
def transcribe_audio(audio_file, batch_size=16):
if audio_file.endswith(".m4a"):
audio_file = convert_to_wav(audio_file)
with tempfile.NamedTemporaryFile(suffix=".wav") as temp_audio_file:
# --copy contents of uploaded audio file to temporary file
temp_audio_file.write(open(audio_file, "rb").read())
temp_audio_file.flush()
# --use torchaudio to load it
waveform, sample_rate = torchaudio.load(temp_audio_file.name)
# --resample to 16kHz
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
waveform = resampler(waveform)
# --convert to mono
if waveform.ndim > 1:
waveform = waveform[0, :]
# Convert tensor@ndarray
waveform = waveform.numpy()
start_time = time.time()
# --pipe it
with torch.no_grad():
outputs = pipe(waveform, sampling_rate=sample_rate, batch_size=batch_size, return_timestamps=False)
end_time = time.time()
output_time = end_time - start_time
word_count = len(text.split())
# --GPU metrics
memory = psutil.virtual_memory()
gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
# --CPU metric
cpu_usage = psutil.cpu_percent(interval=1)
# --system info string
system_info = f"""
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
*Processing time: {output_time:.2f} seconds.*
*Number of words: {word_count}*
*GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}*
*CPU Usage: {cpu_usage}%*
"""
return text.strip(), system_info
# ------------summaries section------------
# [------------for app integration later------------]
@spaces.GPU()
# --btw, who is doing this...?
def clean_text(text):
text = re.sub(r'https?:\/\/.*[\r\n]*', '', text)
text = re.sub(r'[^\w\s]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
# --SpaCy params
nlp = spacy.blank("nb") # ---==> codename ("norsk bokmål")
nlp.add_pipe('sentencizer')
spacy_stop_words = spacy.lang.nb.stop_words.STOP_WORDS
# --model (has tokenizer?)
summarization_model = AutoModel.from_pretrained("NbAiLab/nb-bert-large")
# pipe = pipeline("fill-mask", model="NbAiLab/nb-bert-large") -----hm..
# --process text with SpaCy
@spaces.GPU()
def preprocess_text(text):
doc = nlp(text)
stop_words = spacy_stop_words
words = [token.text for token in doc if token.text.lower() not in stop_words]
return ' '.join(words)
# --model is called to summarize (need to be placed *after* the three styles and call them)
@spaces.GPU()
def summarize_text(text):
preprocessed_text = preprocess_text(text)
inputs = summarization_tokenizer(preprocessed_text, max_length=1024, return_tensors="pt", truncation=True)
inputs = inputs.to(device)
summary_ids = summarization_model.generate(inputs.input_ids, num_beams=5, max_length=150, early_stopping=True)
return summarization_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
@spaces.GPU()
def build_similarity_matrix(sentences, stop_words):
similarity_matrix = nx.Graph()
for i, tokens_a in enumerate(sentences):
for j, tokens_b in enumerate(sentences):
if i != j:
common_words = set(tokens_a) & set(tokens_b)
similarity_matrix.add_edge(i, j, weight=len(common_words))
return similarity_matrix
# [------------model needs to be called for these------------]
# --PageRank
@spaces.GPU()
def graph_based_summary(text, num_paragraphs=3):
doc = nlp(text)
sentences = [sent.text for sent in doc.sents]
if len(sentences) < num_paragraphs:
return ' '.join(sentences)
sentence_tokens = [nlp(sent) for sent in sentences]
stop_words = spacy_stop_words
filtered_tokens = [[token.text for token in tokens if token.text.lower() not in stop_words] for tokens in sentence_tokens]
similarity_matrix = build_similarity_matrix(filtered_tokens, stop_words)
scores = nx.pagerank(similarity_matrix)
ranked_sentences = sorted(((scores[i], sent) for i, sent in enumerate(sentences)), reverse=True)
return ' '.join([sent for _, sent in ranked_sentences[:num_paragraphs]])
# --LexRank
@spaces.GPU()
def lex_rank_summary(text, num_paragraphs=3, threshold=0.1):
doc = nlp(text)
sentences = [sent.text for sent in doc.sents]
if len(sentences) < num_paragraphs:
return ' '.join(sentences) # Adjusted to return a single string
stop_words = spacy_stop_words
vectorizer = TfidfVectorizer(stop_words=list(stop_words))
X = vectorizer.fit_transform(sentences)
similarity_matrix = cosine_similarity(X, X)
# Apply threshold@similarity matrix
similarity_matrix[similarity_matrix < threshold] = 0
nx_graph = nx.from_numpy_array(similarity_matrix)
scores = nx.pagerank(nx_graph)
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
# --TextRank
@spaces.GPU()
def text_rank_summary(text, num_paragraphs=3):
doc = nlp(text)
sentences = [sent.text for sent in doc.sents]
if len(sentences) < num_paragraphs:
return ' '.join(sentences)
stop_words = spacy_stop_words
vectorizer = TfidfVectorizer(stop_words=list(stop_words))
X = vectorizer.fit_transform(sentences)
similarity_matrix = cosine_similarity(X, X)
nx_graph = nx.from_numpy_array(similarity_matrix)
scores = nx.pagerank(nx_graph)
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True)
return ' '.join([ranked_sentences[i][1] for i in range(num_paragraphs)])
# ------------interface section------------
iface = gr.Blocks()
with iface:
gr.HTML(SIDEBAR_INFO)
gr.Markdown(HEADER_INFO)
audio_input = gr.Audio(label="Upload Audio File")
transcribed_text = gr.Textbox(label="Transcribed Text")
system_info = gr.Textbox(label="System Info")
transcribe_button = gr.Button("Transcribe")
transcribe_button.click(fn=transcribe_audio, inputs=audio_input, outputs=[transcribed_text, system_info])
iface.launch(share=True, debug=True)
|