File size: 26,741 Bytes
9392036
 
ed8f744
913507e
ce05869
6b1f66d
757102e
5498932
 
af68571
6b1f66d
ce05869
1280fd8
9392036
1280fd8
9392036
2ee3fae
9392036
 
 
 
1280fd8
 
913507e
574aa10
6ee3759
574aa10
6ee3759
 
 
757102e
 
 
 
574aa10
6ee3759
f872421
 
6b1f66d
89ffe36
 
 
757102e
 
6b1f66d
757102e
 
 
6b1f66d
757102e
6b1f66d
757102e
 
 
 
 
 
 
6b1f66d
757102e
 
 
 
 
 
89ffe36
 
6b1f66d
 
 
 
 
757102e
89ffe36
 
 
f872421
6b1f66d
f872421
ed8f744
f872421
 
 
 
ce05869
 
 
ed8f744
f872421
757102e
6b1f66d
ed8f744
6ee3759
 
 
 
 
ed8f744
 
 
6b1f66d
6ee3759
 
6b1f66d
6ee3759
ed8f744
 
6b1f66d
6ee3759
6b1f66d
ed8f744
6b1f66d
 
 
 
 
 
ed8f744
f872421
757102e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b1f66d
 
757102e
6b1f66d
ed8f744
6b1f66d
d966a8e
757102e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b1f66d
f872421
 
6ee3759
 
ed8f744
6b1f66d
757102e
ed8f744
757102e
 
 
 
6b1f66d
757102e
6b1f66d
 
f872421
757102e
 
 
6b1f66d
 
 
757102e
 
 
 
 
 
 
 
 
 
 
 
6b1f66d
757102e
 
 
 
 
 
 
 
6b1f66d
f872421
 
757102e
 
ed8f744
f872421
757102e
6b1f66d
 
ed8f744
6b1f66d
ed8f744
 
 
 
 
6b1f66d
757102e
ed8f744
757102e
 
 
 
 
 
6b1f66d
757102e
 
 
 
 
 
 
 
 
 
 
 
6b1f66d
757102e
 
 
 
6b1f66d
757102e
6b1f66d
ed8f744
f872421
89ffe36
 
 
 
69db70c
 
 
 
 
 
 
 
 
89ffe36
 
 
 
 
6b1f66d
89ffe36
 
 
4279043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89ffe36
 
 
 
4279043
ed8f744
6b1f66d
4279043
 
 
 
 
 
 
 
89ffe36
757102e
4279043
 
 
 
 
 
 
 
 
89ffe36
 
 
4279043
 
 
 
89ffe36
f872421
ed8f744
6b1f66d
757102e
6b1f66d
 
 
ce05869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4279043
ce05869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89ffe36
6b1f66d
89ffe36
 
d966a8e
ed8f744
 
 
 
6b1f66d
 
 
 
 
 
ed8f744
6b1f66d
ed8f744
 
 
 
 
6b1f66d
ed8f744
6b1f66d
ed8f744
6b1f66d
ed8f744
6b1f66d
ed8f744
 
6b1f66d
ed8f744
 
 
 
 
5498932
6b1f66d
d966a8e
6b1f66d
d966a8e
 
 
6b1f66d
af68571
 
 
6b1f66d
ce05869
08f9513
6b1f66d
af68571
69db70c
af68571
08f9513
 
 
af68571
 
ce05869
89ffe36
 
 
 
69db70c
89ffe36
 
69db70c
89ffe36
6ee3759
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
import streamlit as st
import pandas as pd
import numpy as np
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource, DataTable, TableColumn, CustomJS, Select, Button, HoverTool
from bokeh.layouts import column
from bokeh.palettes import Reds9, Blues9, Oranges9, Purples9, Greys9, BuGn9, Greens9
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import io
import ot
from sklearn.linear_model import LinearRegression

TOOLTIPS = """
<div>
    <div>
        <img src="@img{safe}" style="width:128px; height:auto; float: left; margin: 0px 15px 15px 0px;" alt="@img" border="2"></img>
    </div>
    <div>
        <span style="font-size: 17px; font-weight: bold;">@label</span>
    </div>
</div>
"""

def config_style():
    st.markdown("""
        <style>
        .main-title { font-size: 50px; color: #4CAF50; text-align: center; }
        .sub-title { font-size: 30px; color: #555; }
        .custom-text { font-size: 18px; line-height: 1.5; }
        .bk-legend {
            max-height: 200px;
            overflow-y: auto;
        }
        </style>
    """, unsafe_allow_html=True)
    st.markdown('<h1 class="main-title">Merit Embeddings 馃帓馃搩馃弳</h1>', unsafe_allow_html=True)

# Carga los datos y asigna versiones de forma uniforme
def load_embeddings(model):
    if model == "Donut":
        df_real = pd.read_csv("data/donut_de_Rodrigo_merit_secret_all_embeddings.csv")
        df_par = pd.read_csv("data/donut_de_Rodrigo_merit_es-digital-paragraph-degradation-seq_embeddings.csv")
        df_line = pd.read_csv("data/donut_de_Rodrigo_merit_es-digital-line-degradation-seq_embeddings.csv")
        df_seq  = pd.read_csv("data/donut_de_Rodrigo_merit_es-digital-seq_embeddings.csv")
        df_rot  = pd.read_csv("data/donut_de_Rodrigo_merit_es-digital-rotation-degradation-seq_embeddings.csv")
        df_zoom  = pd.read_csv("data/donut_de_Rodrigo_merit_es-digital-zoom-degradation-seq_embeddings.csv")
        df_render  = pd.read_csv("data/donut_de_Rodrigo_merit_es-render-seq_embeddings.csv")
        df_real["version"] = "real"
        df_par["version"] = "synthetic"
        df_line["version"] = "synthetic"
        df_seq["version"] = "synthetic"
        df_rot["version"] = "synthetic"
        df_zoom["version"] = "synthetic"
        df_render["version"] = "synthetic"

        # Se asigna la fuente
        df_par["source"] = "es-digital-paragraph-degradation-seq"
        df_line["source"] = "es-digital-line-degradation-seq"
        df_seq["source"] = "es-digital-seq"
        df_rot["source"] = "es-digital-rotation-degradation-seq"
        df_zoom["source"] = "es-digital-zoom-degradation-seq"
        df_render["source"] = "es-render-seq"
        return {"real": df_real, "synthetic": pd.concat([df_seq, df_line, df_par, df_rot, df_zoom, df_render], ignore_index=True)}
    
    elif model == "Idefics2":
        df_real = pd.read_csv("data/idefics2_de_Rodrigo_merit_secret_britanico_embeddings.csv")
        df_seq  = pd.read_csv("data/idefics2_de_Rodrigo_merit_es-digital-seq_embeddings.csv")
        df_real["version"] = "real"
        df_seq["version"] = "synthetic"
        df_seq["source"] = "es-digital-seq"
        return {"real": df_real, "synthetic": df_seq}
    
    else:
        st.error("Modelo no reconocido")
        return None

# Selecci贸n de reducci贸n dimensional
def reducer_selector(df_combined, embedding_cols):
    reduction_method = st.selectbox("Select Dimensionality Reduction Method:", options=["PCA", "t-SNE"])
    all_embeddings = df_combined[embedding_cols].values
    if reduction_method == "PCA":
        reducer = PCA(n_components=2)
    else:
        perplexity_val = st.number_input("Perplexity", min_value=5, max_value=50, value=30, step=1)
        learning_rate_val = st.number_input("Learning Rate", min_value=10, max_value=1000, value=200, step=10)
        reducer = TSNE(n_components=2, random_state=42, perplexity=perplexity_val, learning_rate=learning_rate_val)
    return reducer.fit_transform(all_embeddings)

# Funci贸n para agregar datos reales (por cada etiqueta)
def add_dataset_to_fig(fig, df, selected_labels, marker, color_mapping, group_label):
    renderers = {}
    for label in selected_labels:
        subset = df[df['label'] == label]
        if subset.empty:
            continue
        source = ColumnDataSource(data=dict(
            x=subset['x'],
            y=subset['y'],
            label=subset['label'],
            img=subset.get('img', "")
        ))
        color = color_mapping[label]
        legend_label = f"{label} ({group_label})"
        if marker == "circle":
            r = fig.circle('x', 'y', size=10, source=source,
                           fill_color=color, line_color=color,
                           legend_label=legend_label)
        elif marker == "square":
            r = fig.square('x', 'y', size=10, source=source,
                           fill_color=color, line_color=color,
                           legend_label=legend_label)
        elif marker == "triangle":
            r = fig.triangle('x', 'y', size=12, source=source,
                             fill_color=color, line_color=color,
                             legend_label=legend_label)
        renderers[label + f" ({group_label})"] = r
    return renderers

# Nueva funci贸n para plotear sint茅ticos de forma granular pero con leyenda agrupada por source
def add_synthetic_dataset_to_fig(fig, df, labels, marker, color_mapping, group_label):
    renderers = {}
    for label in labels:
        subset = df[df['label'] == label]
        if subset.empty:
            continue
        source_obj = ColumnDataSource(data=dict(
            x=subset['x'],
            y=subset['y'],
            label=subset['label'],
            img=subset.get('img', "")
        ))
        # Se usa el color granular asignado a cada etiqueta
        color = color_mapping[label]
        # La leyenda se asigna al nombre del source para que se agrupe
        legend_label = group_label
        
        if marker == "square":
            r = fig.square('x', 'y', size=10, source=source_obj,
                           fill_color=color, line_color=color,
                           legend_label=legend_label)
        elif marker == "triangle":
            r = fig.triangle('x', 'y', size=12, source=source_obj,
                             fill_color=color, line_color=color,
                             legend_label=legend_label)
        elif marker == "inverted_triangle":
            r = fig.inverted_triangle('x', 'y', size=12, source=source_obj,
                                      fill_color=color, line_color=color,
                                      legend_label=legend_label)
        elif marker == "diamond":
            r = fig.diamond('x', 'y', size=10, source=source_obj,
                            fill_color=color, line_color=color,
                            legend_label=legend_label)
        elif marker == "cross":
            r = fig.cross('x', 'y', size=12, source=source_obj,
                          fill_color=color, line_color=color,
                          legend_label=legend_label)
        elif marker == "x":
            r = fig.x('x', 'y', size=12, source=source_obj,
                      fill_color=color, line_color=color,
                      legend_label=legend_label)
        elif marker == "asterisk":
            r = fig.asterisk('x', 'y', size=12, source=source_obj,
                             fill_color=color, line_color=color,
                             legend_label=legend_label)
        else:
            r = fig.circle('x', 'y', size=10, source=source_obj,
                           fill_color=color, line_color=color,
                           legend_label=legend_label)
        renderers[label + f" ({group_label})"] = r
    return renderers


def get_color_maps(unique_subsets):
    color_map = {}
    # Para reales se asigna color para cada etiqueta
    num_real = len(unique_subsets["real"])
    red_palette = Reds9[:num_real] if num_real <= 9 else (Reds9 * ((num_real // 9) + 1))[:num_real]
    color_map["real"] = {label: red_palette[i] for i, label in enumerate(sorted(unique_subsets["real"]))}
    
    # Para sint茅ticos se asigna color de forma granular: para cada source se mapea cada etiqueta
    color_map["synthetic"] = {}
    for source, labels in unique_subsets["synthetic"].items():
        if source == "es-digital-seq":
            palette = Blues9[:len(labels)] if len(labels) <= 9 else (Blues9 * ((len(labels)//9)+1))[:len(labels)]
        elif source == "es-digital-line-degradation-seq":
            palette = Purples9[:len(labels)] if len(labels) <= 9 else (Purples9 * ((len(labels)//9)+1))[:len(labels)]
        elif source == "es-digital-paragraph-degradation-seq":
            palette = BuGn9[:len(labels)] if len(labels) <= 9 else (BuGn9 * ((len(labels)//9)+1))[:len(labels)]
        elif source == "es-digital-rotation-degradation-seq":
            palette = Greys9[:len(labels)] if len(labels) <= 9 else (Greys9 * ((len(labels)//9)+1))[:len(labels)]
        elif source == "es-digital-zoom-degradation-seq":
            palette = Oranges9[:len(labels)] if len(labels) <= 9 else (Oranges9 * ((len(labels)//9)+1))[:len(labels)]
        elif source == "es-render-seq":
            palette = Greens9[:len(labels)] if len(labels) <= 9 else (Greens9 * ((len(labels)//9)+1))[:len(labels)]
        else:
            palette = Blues9[:len(labels)] if len(labels) <= 9 else (Blues9 * ((len(labels)//9)+1))[:len(labels)]
        color_map["synthetic"][source] = {label: palette[i] for i, label in enumerate(sorted(labels))}
    return color_map

def split_versions(df_combined, reduced):
    df_combined['x'] = reduced[:, 0]
    df_combined['y'] = reduced[:, 1]
    df_real = df_combined[df_combined["version"] == "real"].copy()
    df_synth = df_combined[df_combined["version"] == "synthetic"].copy()
    # Extraer etiquetas 煤nicas para reales
    unique_real = sorted(df_real['label'].unique().tolist())
    # Para sint茅ticos, se agrupan las etiquetas por source
    unique_synth = {}
    for source in df_synth["source"].unique():
        unique_synth[source] = sorted(df_synth[df_synth["source"] == source]['label'].unique().tolist())
    df_dict = {"real": df_real, "synthetic": df_synth}
    # Para los reales se guarda la lista, y para sint茅ticos el diccionario
    unique_subsets = {"real": unique_real, "synthetic": unique_synth}
    return df_dict, unique_subsets

def create_figure(dfs, unique_subsets, color_maps, model_name):
    fig = figure(width=600, height=600, tools="wheel_zoom,pan,reset,save", active_scroll="wheel_zoom", tooltips=TOOLTIPS, title="")
    # Datos reales: se mantienen granulares en plot y en leyenda
    real_renderers = add_dataset_to_fig(fig, dfs["real"], unique_subsets["real"],
                                        marker="circle", color_mapping=color_maps["real"],
                                        group_label="Real")
    # Diccionario de asignaci贸n de marcadores para sint茅ticos por source
    marker_mapping = {
        "es-digital-paragraph-degradation-seq": "x",
        "es-digital-line-degradation-seq": "cross",
        "es-digital-seq": "triangle",
        "es-digital-rotation-degradation-seq": "diamond",
        "es-digital-zoom-degradation-seq": "asterisk",
        "es-render-seq": "inverted_triangle"
    }

    # Datos sint茅ticos: se plotean granularmente (por etiqueta) pero se agrupa la leyenda por source
    synthetic_renderers = {}
    synth_df = dfs["synthetic"]
    for source in unique_subsets["synthetic"]:
        df_source = synth_df[synth_df["source"] == source]
        marker = marker_mapping.get(source, "square")  # Por defecto "square" si no se encuentra
        renderers = add_synthetic_dataset_to_fig(fig, df_source, unique_subsets["synthetic"][source],
                                                  marker=marker,
                                                  color_mapping=color_maps["synthetic"][source],
                                                  group_label=source)
        synthetic_renderers.update(renderers)
    
    fig.legend.location = "top_right"
    fig.legend.click_policy = "hide"
    show_legend = st.checkbox("Show Legend", value=False, key=f"legend_{model_name}")
    fig.legend.visible = show_legend
    return fig, real_renderers, synthetic_renderers


# Calcula los centros de cada cluster (por grupo)
def calculate_cluster_centers(df, labels):
    centers = {}
    for label in labels:
        subset = df[df['label'] == label]
        if not subset.empty:
            centers[label] = (subset['x'].mean(), subset['y'].mean())
    return centers

# Calcula la distancia Wasserstein de cada subset sint茅tico respecto a cada cluster real (por cluster y global)
def compute_wasserstein_distances_synthetic_individual(synthetic_df: pd.DataFrame, df_real: pd.DataFrame, real_labels: list) -> pd.DataFrame:
    distances = {}
    groups = synthetic_df.groupby(['source', 'label'])
    for (source, label), group in groups:
        key = f"{label} ({source})"
        data = group[['x', 'y']].values
        n = data.shape[0]
        weights = np.ones(n) / n
        distances[key] = {}
        for real_label in real_labels:
            real_data = df_real[df_real['label'] == real_label][['x','y']].values
            m = real_data.shape[0]
            weights_real = np.ones(m) / m
            M = ot.dist(data, real_data, metric='euclidean')
            distances[key][real_label] = ot.emd2(weights, weights_real, M)
    
    # Distancia global por fuente
    for source, group in synthetic_df.groupby('source'):
        key = f"Global ({source})"
        data = group[['x','y']].values
        n = data.shape[0]
        weights = np.ones(n) / n
        distances[key] = {}
        for real_label in real_labels:
            real_data = df_real[df_real['label'] == real_label][['x','y']].values
            m = real_data.shape[0]
            weights_real = np.ones(m) / m
            M = ot.dist(data, real_data, metric='euclidean')
            distances[key][real_label] = ot.emd2(weights, weights_real, M)
    return pd.DataFrame(distances).T

def create_table(df_distances):
    df_table = df_distances.copy()
    df_table.reset_index(inplace=True)
    df_table.rename(columns={'index': 'Synthetic'}, inplace=True)
    min_row = {"Synthetic": "Min."}
    mean_row = {"Synthetic": "Mean"}
    max_row = {"Synthetic": "Max."}
    for col in df_table.columns:
        if col != "Synthetic":
            min_row[col] = df_table[col].min()
            mean_row[col] = df_table[col].mean()
            max_row[col] = df_table[col].max()
    df_table = pd.concat([df_table, pd.DataFrame([min_row, mean_row, max_row])], ignore_index=True)
    source_table = ColumnDataSource(df_table)
    columns = [TableColumn(field='Synthetic', title='Synthetic')]
    for col in df_table.columns:
        if col != 'Synthetic':
            columns.append(TableColumn(field=col, title=col))
    total_height = 30 + len(df_table)*28
    data_table = DataTable(source=source_table, columns=columns, sizing_mode='stretch_width', height=total_height)
    return data_table, df_table, source_table

def optimize_tsne_params(df_combined, embedding_cols, df_f1):
    # Rangos de b煤squeda (puedes ajustar estos l铆mites y pasos)
    perplexity_range = np.linspace(30, 50, 10)
    learning_rate_range = np.linspace(200, 1000, 20)
    
    best_R2 = -np.inf
    best_params = None
    total_steps = len(perplexity_range) * len(learning_rate_range)
    step = 0

    # Usamos un placeholder de Streamlit para actualizar mensajes de progreso
    progress_text = st.empty()
    
    for p in perplexity_range:
        for lr in learning_rate_range:
            step += 1
            # Actualizamos el mensaje de progreso
            progress_text.text(f"Evaluating: Perplexity={p:.2f}, Learning Rate={lr:.2f} (Step: {step}/{total_steps})")
            
            # Calcular la reducci贸n con TSNE
            reducer_temp = TSNE(n_components=2, random_state=42, perplexity=p, learning_rate=lr)
            reduced_temp = reducer_temp.fit_transform(df_combined[embedding_cols].values)
            dfs_reduced_temp, unique_subsets_temp = split_versions(df_combined, reduced_temp)
            
            # Calcular distancias Wasserstein
            df_distances_temp = compute_wasserstein_distances_synthetic_individual(
                dfs_reduced_temp["synthetic"],
                dfs_reduced_temp["real"],
                unique_subsets_temp["real"]
            )
            # Extraer los valores globales (suponemos 10 por fuente)
            global_distances_temp = {}
            for idx in df_distances_temp.index:
                if idx.startswith("Global"):
                    source = idx.split("(")[1].rstrip(")")
                    global_distances_temp[source] = df_distances_temp.loc[idx].values
            
            # Acumular datos para la regresi贸n global
            all_x_temp = []
            all_y_temp = []
            for source in df_f1.columns:
                if source in global_distances_temp:
                    x_vals_temp = global_distances_temp[source]
                    y_vals_temp = df_f1[source].values
                    all_x_temp.extend(x_vals_temp)
                    all_y_temp.extend(y_vals_temp)
            if len(all_x_temp) == 0:
                continue
            all_x_temp_arr = np.array(all_x_temp).reshape(-1, 1)
            all_y_temp_arr = np.array(all_y_temp)
            
            model_temp = LinearRegression().fit(all_x_temp_arr, all_y_temp_arr)
            r2_temp = model_temp.score(all_x_temp_arr, all_y_temp_arr)
            
            # Mostrar en pantalla (o log) la tupla evaluada y el R虏 obtenido
            st.write(f"Parameters: Perplexity={p:.2f}, Learning Rate={lr:.2f} -> R虏={r2_temp:.4f}")
            
            if r2_temp > best_R2:
                best_R2 = r2_temp
                best_params = (p, lr)
    
    progress_text.text("Optimization completed!")
    return best_params, best_R2



def run_model(model_name):
    embeddings = load_embeddings(model_name)
    if embeddings is None:
        return

    embedding_cols = [col for col in embeddings["real"].columns if col.startswith("dim_")]
    df_combined = pd.concat(list(embeddings.values()), ignore_index=True)
    
    # Leer el CSV de f1-donut (usado para evaluar la regresi贸n)
    try:
        df_f1 = pd.read_csv("data/f1-donut.csv", sep=';', index_col=0)
    except Exception as e:
        st.error(f"Error loading f1-donut.csv: {e}")
        return

    st.markdown('<h6 class="sub-title">Select Dimensionality Reduction Method</h6>', unsafe_allow_html=True)
    reduction_method = st.selectbox("", options=["t-SNE", "PCA"], key=f"reduction_{model_name}")
    
    # Opci贸n para optimizar los par谩metros TSNE
    if reduction_method == "t-SNE":
        if st.button("Optimize TSNE parameters", key=f"optimize_tnse_{model_name}"):
            st.info("Running optimization, this can take a while...")
            best_params, best_R2 = optimize_tsne_params(df_combined, embedding_cols, df_f1)
            st.success(f"Mejores par谩metros: Perplexity = {best_params[0]:.2f}, Learning Rate = {best_params[1]:.2f} con R虏 = {best_R2:.4f}")
    
    # Permitir al usuario ingresar manualmente los valores (o podr铆as reemplazar estos por los optimizados)
    if reduction_method == "PCA":
        reducer = PCA(n_components=2)
    else:
        perplexity_val = st.number_input("Perplexity", min_value=5, max_value=50, value=30, step=1, key=f"perplexity_{model_name}")
        learning_rate_val = st.number_input("Learning Rate", min_value=10, max_value=1000, value=200, step=10, key=f"learning_rate_{model_name}")
        reducer = TSNE(n_components=2, random_state=42, perplexity=perplexity_val, learning_rate=learning_rate_val)
    
    reduced = reducer.fit_transform(df_combined[embedding_cols].values)
    dfs_reduced, unique_subsets = split_versions(df_combined, reduced)
    
    color_maps = get_color_maps(unique_subsets)
    fig, real_renderers, synthetic_renderers = create_figure(dfs_reduced, unique_subsets, color_maps, model_name)
    
    centers_real = calculate_cluster_centers(dfs_reduced["real"], unique_subsets["real"])
    
    df_distances = compute_wasserstein_distances_synthetic_individual(
        dfs_reduced["synthetic"],
        dfs_reduced["real"],
        unique_subsets["real"]
    )
    
    # --- Scatter plot usando f1-donut.csv ---
    try:
        df_f1 = pd.read_csv("data/f1-donut.csv", sep=';', index_col=0)
    except Exception as e:
        st.error(f"Error loading f1-donut.csv: {e}")
        return
    
    # Extraer los valores globales para cada fuente (sin promediar: 10 valores por fuente)
    global_distances = {}
    for idx in df_distances.index:
        if idx.startswith("Global"):
            # Ejemplo: "Global (es-digital-seq)"
            source = idx.split("(")[1].rstrip(")")
            global_distances[source] = df_distances.loc[idx].values
    
    # Reutilizaci贸n de los c贸digos de colores
    source_colors = {
        "es-digital-paragraph-degradation-seq": "blue",
        "es-digital-line-degradation-seq": "green",
        "es-digital-seq": "red",
        "es-digital-zoom-degradation-seq": "orange",
        "es-digital-rotation-degradation-seq": "purple",
        "es-digital-rotation-zoom-degradation-seq": "brown",
        "es-render-seq": "cyan"
    }
    
    scatter_fig = figure(width=600, height=600, tools="pan,wheel_zoom,reset,save", title="Scatter Plot: Wasserstein vs F1")
    # Variables para la regresi贸n global
    all_x = []
    all_y = []
    
    # Se plotea cada fuente y se acumulan los datos para la regresi贸n global
    for source in df_f1.columns:
        if source in global_distances:
            x_vals = global_distances[source]      # 10 valores (uno por colegio)
            y_vals = df_f1[source].values            # 10 valores de f1, en el mismo orden
            data = {"x": x_vals, "y": y_vals, "Fuente": [source] * len(x_vals)}
            cds = ColumnDataSource(data=data)
            scatter_fig.circle('x', 'y', size=8, alpha=0.7, source=cds,
                               fill_color=source_colors.get(source, "gray"),
                               line_color=source_colors.get(source, "gray"),
                               legend_label=source)
            all_x.extend(x_vals)
            all_y.extend(y_vals)
    
    scatter_fig.xaxis.axis_label = "Wasserstein Distance (Global, por Colegio)"
    scatter_fig.yaxis.axis_label = "F1 Score"
    scatter_fig.legend.location = "top_right"
    
    # Agregar HoverTool para mostrar x, y y la fuente al hacer hover
    hover_tool = HoverTool(tooltips=[("Wass. Distance", "@x"), ("f1", "@y"), ("Subset", "@Fuente")])
    scatter_fig.add_tools(hover_tool)
    # --- Fin scatter plot ---
    
    # --- Regresi贸n global ---
    all_x_arr = np.array(all_x).reshape(-1, 1)
    all_y_arr = np.array(all_y)
    model_global = LinearRegression().fit(all_x_arr, all_y_arr)
    slope = model_global.coef_[0]
    intercept = model_global.intercept_
    r2 = model_global.score(all_x_arr, all_y_arr)
    
    # Agregar l铆nea de regresi贸n global al scatter plot
    x_line = np.linspace(all_x_arr.min(), all_x_arr.max(), 100)
    y_line = model_global.predict(x_line.reshape(-1, 1))
    scatter_fig.line(x_line, y_line, line_width=2, line_color="black", legend_label="Global Regression")
    
    # Mostrar m茅tricas de regresi贸n despu茅s del scatter plot
    regression_metrics = {"Slope": [slope], "Intercept": [intercept], "R2": [r2]}
    reg_df = pd.DataFrame(regression_metrics)
    st.table(reg_df)
    
    # --- Fin regresi贸n global ---
    
    data_table, df_table, source_table = create_table(df_distances)
    
    real_subset_names = list(df_table.columns[1:])
    real_select = Select(title="", value=real_subset_names[0], options=real_subset_names)
    reset_button = Button(label="Reset Colors", button_type="primary")
    line_source = ColumnDataSource(data={'x': [], 'y': []})
    fig.line('x', 'y', source=line_source, line_width=2, line_color='black')
    
    real_centers_js = {k: [v[0], v[1]] for k, v in centers_real.items()}
    synthetic_centers = {}
    synth_labels = sorted(dfs_reduced["synthetic"]['label'].unique().tolist())
    for label in synth_labels:
        subset = dfs_reduced["synthetic"][dfs_reduced["synthetic"]['label'] == label]
        synthetic_centers[label] = [subset['x'].mean(), subset['y'].mean()]
    
    callback = CustomJS(args=dict(source=source_table, line_source=line_source,
                                  synthetic_centers=synthetic_centers,
                                  real_centers=real_centers_js,
                                  real_select=real_select),
    code="""
        var selected = source.selected.indices;
        if (selected.length > 0) {
            var idx = selected[0];
            var data = source.data;
            var synth_label = data['Synthetic'][idx];
            var real_label = real_select.value;
            var syn_coords = synthetic_centers[synth_label];
            var real_coords = real_centers[real_label];
            line_source.data = {'x': [syn_coords[0], real_coords[0]], 'y': [syn_coords[1], real_coords[1]]};
            line_source.change.emit();
        } else {
            line_source.data = {'x': [], 'y': []};
            line_source.change.emit();
        }
    """)
    source_table.selected.js_on_change('indices', callback)
    real_select.js_on_change('value', callback)
    
    reset_callback = CustomJS(args=dict(line_source=line_source),
    code="""
        line_source.data = {'x': [], 'y': []};
        line_source.change.emit();
    """)
    reset_button.js_on_event("button_click", reset_callback)
    
    buffer = io.BytesIO()
    df_table.to_excel(buffer, index=False)
    buffer.seek(0)
    
    layout = column(fig, scatter_fig, column(real_select, reset_button, data_table))
    st.bokeh_chart(layout, use_container_width=True)
    
    st.download_button(
        label="Export Table",
        data=buffer,
        file_name=f"cluster_distances_{model_name}.xlsx",
        mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
        key=f"download_button_excel_{model_name}"
    )


def main():
    config_style()
    tabs = st.tabs(["Donut", "Idefics2"])
    with tabs[0]:
        st.markdown('<h2 class="sub-title">Donut 馃</h2>', unsafe_allow_html=True)
        run_model("Donut")
    with tabs[1]:
        st.markdown('<h2 class="sub-title">Idefics2 馃</h2>', unsafe_allow_html=True)
        run_model("Idefics2")

if __name__ == "__main__":
    main()