Spaces:
Paused
Paused
File size: 19,672 Bytes
ba72f62 2ae57cb 22b00f2 2ae57cb 308d699 1f41a8a 9ee49ff a3c2881 9ee49ff a3c2881 2ae57cb acc179d 9039967 a1b807c 44441db 2445440 a1b807c 2445440 a1b807c 2445440 a1b807c 2445440 a1b807c 2445440 2ae57cb 44441db a1b807c 22b00f2 2ae57cb 22b00f2 308d699 1f41a8a 308d699 a1b807c 57a37ae 308d699 a1b807c 57a37ae 22b00f2 2ae57cb acc179d 22b00f2 44441db 9ee49ff a3c2881 9ee49ff a3c2881 9ee49ff a3c2881 32acb92 2ae57cb 44441db aea35a7 44441db aea35a7 44441db aea35a7 44441db 562ec01 308d699 a1b807c 308d699 a1b807c 308d699 2ae57cb 44441db 22b00f2 2ae57cb 32acb92 aea35a7 32acb92 aea35a7 32acb92 aea35a7 32acb92 aea35a7 32acb92 22b00f2 308d699 2ae57cb a1b807c 308d699 a1b807c 44441db 308d699 44441db 8e4e001 44441db a1b807c 44441db 308d699 44441db a1b807c 308d699 44441db 308d699 44441db a1b807c 44441db 8e4e001 308d699 a1b807c 308d699 a1b807c 308d699 44441db a1b807c 44441db 308d699 44441db a1b807c 308d699 a1b807c 308d699 44441db 308d699 44441db 2ae57cb 44441db 2ae57cb 308d699 32acb92 308d699 a1b807c eb3d745 22b00f2 eb3d745 2ae57cb eb3d745 44441db 1f41a8a a1b807c eb3d745 a1b807c eb3d745 1f41a8a eb3d745 308d699 1f41a8a eb3d745 1f41a8a 2ae57cb 44441db 22b00f2 2ae57cb 308d699 a1b807c 2ae57cb 308d699 a1b807c 308d699 44441db a1b807c 308d699 44441db 562ec01 308d699 a1b807c 308d699 44441db 308d699 a1b807c 308d699 a1b807c 308d699 a1b807c 308d699 a1b807c 308d699 a1b807c 308d699 2ae57cb 44441db 2ae57cb 308d699 a1b807c 44441db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
import os
import json
import asyncio
import edge_tts
from faster_whisper import WhisperModel
from langchain_groq import ChatGroq
import logging
import tempfile
import shutil
import torch
from backend.services.interview_retrieval import (
extract_all_roles_from_qdrant,
retrieve_interview_data,
random_context_chunks,
get_role_questions, # π For sample questions
qdrant_client # π For collection info
)
try:
print("π Qdrant Collections:", qdrant_client.get_collections())
info = qdrant_client.get_collection("interview_questions")
print("β
Vector size:", info.config.params.vectors.size)
print("β
Distance metric:", info.config.params.vectors.distance)
all_roles_debug = extract_all_roles_from_qdrant()
print(f"β
Found {len(all_roles_debug)} roles:", all_roles_debug)
if all_roles_debug:
sample_questions_debug = get_role_questions(all_roles_debug[0])
print(f"β
Sample questions for '{all_roles_debug[0]}': {len(sample_questions_debug)} found")
except Exception as e:
print("β οΈ Qdrant check failed:", e)
if torch.cuda.is_available():
print("π₯ CUDA Available")
print(torch.cuda.get_device_name(0))
print("cuDNN version:", torch.backends.cudnn.version())
else:
print("β CUDA Not Available")
print("π₯ CUDA:", torch.cuda.is_available())
print("π§ GPU:", torch.cuda.get_device_name(0))
print("π‘ cuDNN version:", torch.backends.cudnn.version())
print("π₯ cuDNN enabled:", torch.backends.cudnn.is_available())
# Initialize models
chat_groq_api = os.getenv("GROQ_API_KEY")
# Attempt to initialize the Groq LLM only if an API key is provided. When
# running in environments where the key is unavailable (such as local
# development or automated testing), fall back to a simple stub that
# generates generic responses. This avoids raising an exception at import
# time and allows the rest of the application to run without external
# dependencies. See the DummyGroq class defined below.
if chat_groq_api:
try:
groq_llm = ChatGroq(
temperature=0.7,
model_name="llama-3.3-70b-versatile",
api_key=chat_groq_api
)
except Exception as e:
logging.error(f"Error initializing ChatGroq LLM: {e}. Falling back to dummy model.")
groq_llm = None
else:
groq_llm = None
if groq_llm is None:
class DummyGroq:
"""A fallback language model used when no Groq API key is set.
The ``invoke`` method of this class returns a simple canned response
rather than calling an external API. This ensures that the
interview functionality still produces a sensible prompt, albeit
without advanced LLM behaviour.
"""
def invoke(self, prompt: str):
# Provide a very generic question based on the prompt. This
# implementation ignores the prompt contents entirely; in a more
# sophisticated fallback you could parse ``prompt`` to tailor
# responses.
return "Tell me about yourself and why you're interested in this position."
groq_llm = DummyGroq()
# Initialize Whisper model
#
# Loading the Whisper model can take several seconds on first use because the
# model weights must be downloaded from Hugging Face. This delay can cause
# the API call to ``/api/transcribe_audio`` to appear stuck while the model
# downloads. To mitigate this, we allow the model size to be configured via
# the ``WHISPER_MODEL_NAME`` environment variable and preload the model when
# this module is imported. Using a smaller model (e.g. "tiny" or "base.en")
# reduces download size and inference time considerably.
whisper_model = None
def load_whisper_model():
global whisper_model
if whisper_model is None:
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
compute_type = "float16" if device == "cuda" else "int8"
# Allow overriding the model size via environment. Default to a
# lightweight model to improve startup times. Available options
# include: tiny, base, base.en, small, medium, large. See
# https://huggingface.co/ggerganov/whisper.cpp for details.
model_name = os.getenv("WHISPER_MODEL_NAME", "tiny")
whisper_model = WhisperModel(model_name, device=device, compute_type=compute_type)
logging.info(f"Whisper model '{model_name}' loaded on {device} with {compute_type}")
except Exception as e:
logging.error(f"Error loading Whisper model: {e}")
# Fallback to CPU
whisper_model = WhisperModel(model_name if 'model_name' in locals() else "tiny", device="cpu", compute_type="int8")
return whisper_model
load_whisper_model()
def generate_first_question(profile, job):
"""Generate the first interview question based on profile and job"""
all_roles = extract_all_roles_from_qdrant()
logging.info(f"[QDRANT DEBUG] Available Roles: {all_roles}")
retrieved_data = retrieve_interview_data(job.role.lower(), all_roles)
logging.info(f"[QDRANT DEBUG] Role requested: {job.role.lower()}")
logging.info(f"[QDRANT DEBUG] Questions retrieved: {len(retrieved_data)}")
if retrieved_data:
logging.info(f"[QDRANT DEBUG] Sample Q: {retrieved_data[0]['question']}")
else:
logging.warning("[QDRANT DEBUG] No questions retrieved, falling back to defaults")
context_data = random_context_chunks(retrieved_data, k=4) if retrieved_data else ""
try:
prompt = f"""
You are LUNA, an AI recruiter conducting an interview for a {job.role} position at {job.company}.
Candidate profile:
- Skills: {profile.get('skills', [])}
- Experience: {profile.get('experience', [])}
- Education: {profile.get('education', [])}
Interview style:
- Start the interview in a friendly but professional way.
- Always begin with: "Hi, how are you? I'm LUNA, your AI recruiter."
- If the candidate has previous experience, reference their most recent role or company:
Example: "I see you previously worked at {profile.get('experience', [''])[0]}.
Can you tell me more about your time there, along with your education and overall background?"
- If no experience is available, simply ask them to tell you about their background, education, and experience.
Respond ONLY with the question text, no formatting or extra notes.
"""
response = groq_llm.invoke(prompt)
# Fix: Handle AIMessage object properly
if hasattr(response, 'content'):
question = response.content.strip()
elif isinstance(response, str):
question = response.strip()
else:
question = str(response).strip()
# Ensure we have a valid question
if not question or len(question) < 10:
question = "Tell me about yourself and why you're interested in this position."
logging.info(f"Generated question: {question}")
return question
except Exception as e:
logging.error(f"Error generating first question: {e}")
return "Tell me about yourself and why you're interested in this position."
def generate_next_question(profile, job, conversation_history, last_answer):
"""Generate the next interview question based on profile, job, and conversation so far"""
all_roles = extract_all_roles_from_qdrant()
logging.info(f"[QDRANT DEBUG] Available Roles: {all_roles}")
retrieved_data = retrieve_interview_data(job.role.lower(), all_roles)
logging.info(f"[QDRANT DEBUG] Role requested: {job.role.lower()}")
logging.info(f"[QDRANT DEBUG] Questions retrieved: {len(retrieved_data)}")
if retrieved_data:
logging.info(f"[QDRANT DEBUG] Sample Next Q: {retrieved_data[0]['question']}")
else:
logging.warning("[QDRANT DEBUG] No questions retrieved, falling back to defaults")
context_data = random_context_chunks(retrieved_data, k=4) if retrieved_data else ""
try:
prompt = f"""
You are LUNA, an AI recruiter continuing an interview for a {job.role} position at {job.company}.
Candidate profile:
- Skills: {profile.get('skills', [])}
- Experience: {profile.get('experience', [])}
- Education: {profile.get('education', [])}
Conversation so far:
{conversation_history}
Candidate's last answer:
{last_answer}
Interview style:
- Acknowledge the candidate's last answer naturally (e.g., "That's a great point", "I see what you mean").
- Then ask a related follow-up question that connects to what they just said.
- Keep the tone professional, concise, and relevant to the role.
- If technical, dig deeper into skills or tools they mentioned.
- If behavioral, expand on situations or experiences they described.
Respond ONLY with the next question text (no formatting, no commentary).
"""
response = groq_llm.invoke(prompt)
if hasattr(response, 'content'):
question = response.content.strip()
elif isinstance(response, str):
question = response.strip()
else:
question = str(response).strip()
if not question or len(question) < 10:
question = "Could you elaborate more on your last point?"
logging.info(f"Generated next question: {question}")
return question
except Exception as e:
logging.error(f"Error generating next question: {e}")
return "Could you elaborate more on your last point?"
def edge_tts_to_file_sync(text, output_path, voice="en-US-AriaNeural"):
"""Synchronous wrapper for edge-tts with better error handling"""
try:
# Ensure text is not empty
if not text or not text.strip():
logging.error("Empty text provided for TTS")
return None
# Ensure the directory exists and is writable
directory = os.path.dirname(output_path)
if not directory:
directory = "/tmp/audio"
output_path = os.path.join(directory, os.path.basename(output_path))
os.makedirs(directory, exist_ok=True)
# Test write permissions with a temporary file
test_file = os.path.join(directory, f"test_{os.getpid()}.tmp")
try:
with open(test_file, 'w') as f:
f.write("test")
os.remove(test_file)
logging.info(f"Directory {directory} is writable")
except (PermissionError, OSError) as e:
logging.error(f"Directory {directory} is not writable: {e}")
# Fallback to /tmp
directory = "/tmp/audio"
output_path = os.path.join(directory, os.path.basename(output_path))
os.makedirs(directory, exist_ok=True)
async def generate_audio():
try:
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_path)
logging.info(f"TTS audio saved to: {output_path}")
except Exception as e:
logging.error(f"Error in async TTS generation: {e}")
raise
# Run async function in sync context
try:
loop = asyncio.get_event_loop()
if loop.is_running():
# If loop is already running, create a new one in a thread
import threading
import concurrent.futures
def run_in_thread():
new_loop = asyncio.new_event_loop()
asyncio.set_event_loop(new_loop)
try:
new_loop.run_until_complete(generate_audio())
finally:
new_loop.close()
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(run_in_thread)
future.result(timeout=30) # 30 second timeout
else:
loop.run_until_complete(generate_audio())
except RuntimeError:
# No event loop exists
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
loop.run_until_complete(generate_audio())
finally:
loop.close()
# Verify file was created and has content
if os.path.exists(output_path):
file_size = os.path.getsize(output_path)
if file_size > 1000: # At least 1KB for a valid audio file
logging.info(f"TTS file created successfully: {output_path} ({file_size} bytes)")
return output_path
else:
logging.error(f"TTS file is too small: {output_path} ({file_size} bytes)")
return None
else:
logging.error(f"TTS file was not created: {output_path}")
return None
except Exception as e:
logging.error(f"Error in TTS generation: {e}")
return None
def convert_webm_to_wav(webm_path, wav_path):
"""Convert WebM audio to WAV using ffmpeg if available"""
try:
import subprocess
result = subprocess.run([
'ffmpeg', '-i', webm_path, '-ar', '16000', '-ac', '1', '-y', wav_path
], capture_output=True, text=True, timeout=30)
if result.returncode == 0 and os.path.exists(wav_path) and os.path.getsize(wav_path) > 0:
logging.info(f"Successfully converted {webm_path} to {wav_path}")
return wav_path
else:
logging.error(f"FFmpeg conversion failed: {result.stderr}")
return None
except (subprocess.TimeoutExpired, FileNotFoundError, Exception) as e:
logging.error(f"Error converting audio: {e}")
return None
def generate_next_question(profile, job, conversation_history, last_answer):
"""Generate the next interview question based on profile, job, and conversation so far"""
all_roles = extract_all_roles_from_qdrant()
logging.info(f"[QDRANT DEBUG] Available Roles: {all_roles}")
retrieved_data = retrieve_interview_data(job.role.lower(), all_roles)
logging.info(f"[QDRANT DEBUG] Role requested: {job.role.lower()}")
logging.info(f"[QDRANT DEBUG] Questions retrieved: {len(retrieved_data)}")
if retrieved_data:
logging.info(f"[QDRANT DEBUG] Sample Next Q: {retrieved_data[0]['question']}")
else:
logging.warning("[QDRANT DEBUG] No questions retrieved, falling back to defaults")
context_data = random_context_chunks(retrieved_data, k=4) if retrieved_data else ""
try:
prompt = f"""
You are continuing an interview for a {job.role} position at {job.company}.
Candidate's profile:
- Skills: {profile.get('skills', [])}
- Experience: {profile.get('experience', [])}
- Education: {profile.get('education', [])}
Conversation so far:
{conversation_history}
Candidate's last answer:
{last_answer}
Use the following context to generate the next question:
{context_data}
Generate an appropriate follow-up interview question that is professional and relevant.
Keep it concise and clear. If the interview is for a technical role, focus on technical skills.
"""
response = groq_llm.invoke(prompt)
if hasattr(response, 'content'):
question = response.content.strip()
elif isinstance(response, str):
question = response.strip()
else:
question = str(response).strip()
if not question or len(question) < 10:
question = "Could you elaborate more on your last point?"
logging.info(f"Generated next question: {question}")
return question
except Exception as e:
logging.error(f"Error generating next question: {e}")
return "Could you elaborate more on your last point?"
import subprocess # top of the file if not already imported
def whisper_stt(audio_path):
"""Speech-to-text using Faster-Whisper"""
try:
if not os.path.exists(audio_path) or os.path.getsize(audio_path) == 0:
logging.error(f"Audio file is empty or missing: {audio_path}")
return ""
# Convert webm to wav using ffmpeg
wav_path = audio_path.replace(".webm", ".wav")
cmd = [
"ffmpeg",
"-y", # overwrite
"-i", audio_path,
"-ar", "16000",
"-ac", "1",
"-f", "wav",
wav_path
]
subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
if not os.path.exists(wav_path) or os.path.getsize(wav_path) == 0:
logging.error(f"FFmpeg conversion failed or produced empty file: {wav_path}")
return ""
model = load_whisper_model()
segments, _ = model.transcribe(wav_path)
transcript = " ".join(segment.text for segment in segments)
return transcript.strip()
except Exception as e:
logging.error(f"Error in STT: {e}")
return ""
def evaluate_answer(question, answer, job_role="Software Developer", seniority="Mid-level"):
"""Evaluate candidate's answer with better error handling"""
try:
if not answer or not answer.strip():
return {
"score": "Poor",
"feedback": "No answer provided."
}
prompt = f"""
You are evaluating a candidate's answer for a {seniority} {job_role} position.
Question: {question}
Candidate Answer: {answer}
Evaluate based on technical correctness, clarity, and relevance.
Provide a brief evaluation in 1-2 sentences.
Rate the answer as one of: Poor, Medium, Good, Excellent
Respond in this exact format:
Score: [Poor/Medium/Good/Excellent]
Feedback: [Your brief feedback here]
"""
response = groq_llm.invoke(prompt)
# Handle AIMessage object properly
if hasattr(response, 'content'):
response_text = response.content.strip()
elif isinstance(response, str):
response_text = response.strip()
else:
response_text = str(response).strip()
# Parse the response
lines = response_text.split('\n')
score = "Medium" # default
feedback = "Good answer, but could be more detailed." # default
for line in lines:
line = line.strip()
if line.startswith('Score:'):
score = line.replace('Score:', '').strip()
elif line.startswith('Feedback:'):
feedback = line.replace('Feedback:', '').strip()
# Ensure score is valid
valid_scores = ["Poor", "Medium", "Good", "Excellent"]
if score not in valid_scores:
score = "Medium"
return {
"score": score,
"feedback": feedback
}
except Exception as e:
logging.error(f"Error evaluating answer: {e}")
return {
"score": "Medium",
"feedback": "Unable to evaluate answer at this time."
} |