File size: 24,042 Bytes
32dbb08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dd7582
61542b8
32dbb08
61542b8
 
32dbb08
 
 
 
5dd7582
 
32dbb08
 
6a05116
06e8556
32dbb08
 
ce5dc65
32dbb08
 
 
 
 
ce5dc65
32dbb08
 
2817fcb
32dbb08
 
 
 
 
 
 
 
2817fcb
32dbb08
 
 
 
 
 
985478d
cd60bd0
2817fcb
cd60bd0
 
 
 
 
c57e76c
32dbb08
 
61542b8
5dd7582
f585ea0
 
 
 
 
 
 
 
32dbb08
53c7136
32dbb08
 
 
 
 
 
 
 
 
 
9fd4b06
 
 
 
 
06e8556
9fd4b06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06e8556
85b93b7
7d21286
 
a90efab
ef71549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49218db
ef71549
49218db
 
 
 
 
ef71549
 
 
 
 
 
 
 
 
 
49218db
 
 
 
ef71549
49218db
 
 
ef71549
49218db
 
 
ef71549
49218db
 
 
 
 
ef71549
49218db
 
 
 
ef71549
49218db
 
 
ef71549
49218db
 
ef71549
 
 
49218db
 
ef71549
49218db
 
ef71549
49218db
 
 
 
 
 
 
 
c50d688
dd7b655
ef71549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c50d688
ef71549
 
 
 
 
cc32e03
ef71549
 
 
 
 
 
 
 
 
 
c50d688
dd7b655
ef71549
 
 
 
 
 
 
c50d688
ef71549
 
 
 
ad392eb
0c85aa2
ef71549
ad392eb
dd7b655
49218db
cc32e03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad392eb
9fd4b06
 
 
c50d688
 
 
06e8556
2817fcb
 
 
32dbb08
2817fcb
28169bd
2817fcb
531005f
2817fcb
28169bd
2817fcb
32dbb08
2817fcb
 
28169bd
32dbb08
 
5dd7582
32dbb08
5dd7582
 
32dbb08
 
531005f
5dd7582
32dbb08
 
 
 
4493851
2817fcb
 
 
4493851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06e8556
32dbb08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fd4b06
 
32dbb08
9fd4b06
 
 
 
 
 
06e8556
53c7136
f585ea0
e46e945
f585ea0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32dbb08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
import json
import gzip
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from io import StringIO

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    BENCHMARK_COLS_MULTIMODAL,
    BENCHMARK_COLS_MIB_SUBGRAPH,
    BENCHMARK_COLS_MIB_CAUSALGRAPH,
    COLS,
    COLS_MIB_SUBGRAPH,
    COLS_MIB_CAUSALGRAPH,
    COLS_MULTIMODAL,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    AutoEvalColumn_mib_subgraph,
    AutoEvalColumn_mib_causalgraph,
    fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID, TOKEN, RESULTS_REPO_MIB_SUBGRAPH, EVAL_RESULTS_MIB_SUBGRAPH_PATH, RESULTS_REPO_MIB_CAUSALGRAPH, EVAL_RESULTS_MIB_CAUSALGRAPH_PATH
from src.populate import get_evaluation_queue_df, get_leaderboard_df, get_leaderboard_df_mib_subgraph, get_leaderboard_df_mib_causalgraph
from src.submission.submit import add_new_eval



def restart_space():
    API.restart_space(repo_id=REPO_ID)



### Space initialisation
try:
    # print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


try:
    # print(RESULTS_REPO_MIB_SUBGRAPH)
    snapshot_download(
        repo_id=RESULTS_REPO_MIB_SUBGRAPH, local_dir=EVAL_RESULTS_MIB_SUBGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


try:
    # print(RESULTS_REPO_MIB_CAUSALGRAPH)
    snapshot_download(
        repo_id=RESULTS_REPO_MIB_CAUSALGRAPH, local_dir=EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()



LEADERBOARD_DF_MIB_SUBGRAPH = get_leaderboard_df_mib_subgraph(EVAL_RESULTS_MIB_SUBGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_SUBGRAPH, BENCHMARK_COLS_MIB_SUBGRAPH)

# LEADERBOARD_DF_MIB_CAUSALGRAPH = get_leaderboard_df_mib_causalgraph(EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, EVAL_REQUESTS_PATH, COLS_MIB_CAUSALGRAPH, BENCHMARK_COLS_MIB_CAUSALGRAPH)
# In app.py, modify the LEADERBOARD initialization
LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED = get_leaderboard_df_mib_causalgraph(
    EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, 
    EVAL_REQUESTS_PATH, 
    COLS_MIB_CAUSALGRAPH, 
    BENCHMARK_COLS_MIB_CAUSALGRAPH
)


# LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
# LEADERBOARD_DF_MULTIMODAL = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS_MULTIMODAL, BENCHMARK_COLS_MULTIMODAL)

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)





# def init_leaderboard_mib_subgraph(dataframe, track):
#     # print(f"init_leaderboard_mib: dataframe head before loc is {dataframe.head()}\n")
    
#     if dataframe is None or dataframe.empty:
#         raise ValueError("Leaderboard DataFrame is empty or None.")

#     # filter for correct track
#     # dataframe = dataframe.loc[dataframe["Track"] == track]

#     # print(f"init_leaderboard_mib: dataframe head after loc is {dataframe.head()}\n")
    
#     return Leaderboard(
#         value=dataframe,
#         datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
#         select_columns=SelectColumns(
#             default_selection=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.displayed_by_default],
#             cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.never_hidden],
#             label="Select Columns to Display:",
#         ),
#         search_columns=["Method"],  # Changed from AutoEvalColumn_mib_subgraph.model.name to "Method"
#         hide_columns=[c.name for c in fields(AutoEvalColumn_mib_subgraph) if c.hidden],
#         bool_checkboxgroup_label="Hide models",
#         interactive=False,
#     )



from src.about import TasksMib_Subgraph



def init_leaderboard_mib_subgraph(dataframe, track):
    """Initialize the subgraph leaderboard with grouped column selection by benchmark."""
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
    
    # Create groups of columns by benchmark
    benchmark_groups = []
    
    # For each benchmark in our TasksMib_Subgraph enum...
    for task in TasksMib_Subgraph:
        benchmark = task.value.benchmark
        # Get all valid columns for this benchmark's models
        benchmark_cols = [
            f"{benchmark}_{model}"
            for model in task.value.models
            if f"{benchmark}_{model}" in dataframe.columns
        ]
        if benchmark_cols:  # Only add if we have valid columns
            benchmark_groups.append(benchmark_cols)
            print(f"\nBenchmark group for {benchmark}:", benchmark_cols)

    # Create model groups as well
    model_groups = []
    all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
    
    # For each unique model...
    for model in all_models:
        # Get all valid columns for this model across benchmarks
        model_cols = [
            f"{task.value.benchmark}_{model}"
            for task in TasksMib_Subgraph
            if model in task.value.models
            and f"{task.value.benchmark}_{model}" in dataframe.columns
        ]
        if model_cols:  # Only add if we have valid columns
            model_groups.append(model_cols)
            print(f"\nModel group for {model}:", model_cols)

    # Combine all groups
    all_groups = benchmark_groups + model_groups
    
    # Flatten groups for default selection (show everything initially)
    all_columns = [col for group in all_groups for col in group]
    print("\nAll available columns:", all_columns)

    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
        select_columns=SelectColumns(
            default_selection=all_columns,  # Show all columns initially
            label="Select Results:"
        ),
        search_columns=["Method"],
        hide_columns=[],
        interactive=False,
    )


# def init_leaderboard_mib_subgraph(dataframe, track):
#     """Initialize the subgraph leaderboard with display names for better readability."""
#     if dataframe is None or dataframe.empty:
#         raise ValueError("Leaderboard DataFrame is empty or None.")

#     print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
    
#     # First, create our display name mapping
#     # This is like creating a translation dictionary between internal names and display names
#     display_mapping = {}
#     for task in TasksMib_Subgraph:
#         for model in task.value.models:
#             field_name = f"{task.value.benchmark}_{model}"
#             display_name = f"{task.value.benchmark}({model})"
#             display_mapping[field_name] = display_name

#     # Now when creating benchmark groups, we'll use display names
#     benchmark_groups = []
#     for task in TasksMib_Subgraph:
#         benchmark = task.value.benchmark
#         benchmark_cols = [
#             display_mapping[f"{benchmark}_{model}"]  # Use display name from our mapping
#             for model in task.value.models
#             if f"{benchmark}_{model}" in dataframe.columns
#         ]
#         if benchmark_cols:
#             benchmark_groups.append(benchmark_cols)
#             print(f"\nBenchmark group for {benchmark}:", benchmark_cols)

#     # Similarly for model groups
#     model_groups = []
#     all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
    
#     for model in all_models:
#         model_cols = [
#             display_mapping[f"{task.value.benchmark}_{model}"]  # Use display name
#             for task in TasksMib_Subgraph
#             if model in task.value.models
#             and f"{task.value.benchmark}_{model}" in dataframe.columns
#         ]
#         if model_cols:
#             model_groups.append(model_cols)
#             print(f"\nModel group for {model}:", model_cols)

#     # Combine all groups using display names
#     all_groups = benchmark_groups + model_groups
#     all_columns = [col for group in all_groups for col in group]

#     # Important: We need to rename our DataFrame columns to match display names
#     renamed_df = dataframe.rename(columns=display_mapping)

#     return Leaderboard(
#         value=renamed_df,  # Use DataFrame with display names
#         datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
#         select_columns=SelectColumns(
#             default_selection=all_columns,  # Now contains display names
#             label="Select Results:"
#         ),
#         search_columns=["Method"],
#         hide_columns=[],
#         interactive=False,
#     )




    class SmartSelectColumns(gr.SelectColumns):
        """
        Enhanced SelectColumns component for Gradio Leaderboard with smart filtering and mapping capabilities.
        """
        def __init__(
            self,
            column_filters: Optional[Dict[str, List[str]]] = None,
            column_mapping: Optional[Dict[str, str]] = None,
            initial_selected: Optional[List[str]] = None,
            *args,
            **kwargs
        ):
            """
            Initialize SmartSelectColumns with enhanced functionality.
            
            Args:
                column_filters: Dict mapping filter names to lists of substrings to match
                column_mapping: Dict mapping actual column names to display names
                initial_selected: List of column names to be initially selected
                *args, **kwargs: Additional arguments passed to parent SelectColumns
            """
            super().__init__(*args, **kwargs)
            self.column_filters = column_filters or {}
            self.column_mapping = column_mapping or {}
            self.reverse_mapping = {v: k for k, v in self.column_mapping.items()} if column_mapping else {}
            self.initial_selected = initial_selected or []
        
        def preprocess(self, x: List[str]) -> List[str]:
            """
            Transform selected display names back to actual column names.
            
            Args:
                x: List of selected display names
                
            Returns:
                List of actual column names
            """
            return [self.reverse_mapping.get(col, col) for col in x]
        
        def postprocess(self, y: List[str]) -> List[str]:
            """
            Transform actual column names to display names.
            
            Args:
                y: List of actual column names
                
            Returns:
                List of display names
            """
            return [self.column_mapping.get(col, col) for col in y]
        
        def get_filtered_columns(self, df: pd.DataFrame) -> Dict[str, List[str]]:
            """
            Get columns filtered by substring matches.
            
            Args:
                df: Input DataFrame
                
            Returns:
                Dict mapping filter names to lists of matching display names
            """
            filtered_cols = {}
            
            for filter_name, substrings in self.column_filters.items():
                matching_cols = []
                for col in df.columns:
                    if any(substr.lower() in col.lower() for substr in substrings):
                        display_name = self.column_mapping.get(col, col)
                        matching_cols.append(display_name)
                filtered_cols[filter_name] = matching_cols
                
            return filtered_cols

        def update(
            self, 
            value: Union[pd.DataFrame, Dict[str, List[str]], Any], 
            interactive: Optional[bool] = None
        ) -> Dict:
            """
            Update component with new values, supporting DataFrame fields.
            
            Args:
                value: DataFrame, dict of columns, or fields object
                interactive: Whether component should be interactive
                
            Returns:
                Dict containing update configuration
            """
            if isinstance(value, pd.DataFrame):
                filtered_cols = self.get_filtered_columns(value)
                choices = [self.column_mapping.get(col, col) for col in value.columns]
                
                # Set initial selection if provided
                value = self.initial_selected if self.initial_selected else choices
                
                return {
                    "choices": choices,
                    "value": value,
                    "filtered_cols": filtered_cols,
                    "interactive": interactive if interactive is not None else self.interactive
                }
            
            # Handle fields object (e.g., from dataclass)
            if hasattr(value, '__dataclass_fields__'):
                field_names = [field.name for field in fields(value)]
                choices = [self.column_mapping.get(name, name) for name in field_names]
                return {
                    "choices": choices,
                    "value": self.initial_selected if self.initial_selected else choices,
                    "interactive": interactive if interactive is not None else self.interactive
                }
                
            return super().update(value, interactive)
    

    # Define filters and mappings
    filters = {
        "IOI Metrics": ["ioi"],
        "Performance Metrics": ["performance"]
    }
    
    mappings = {
        "ioi_score_1": "IOI Score (Type 1)",
        "ioi_score_2": "IOI Score (Type 2)",
        "other_metric": "Other Metric",
        "performance_1": "Performance Metric 1"
    }
    
    column_filters = filters
    column_mapping = mappings
    initial_columns = renamed_df


    # Initialize SmartSelectColumns
    smart_columns = SmartSelectColumns(
        column_filters=filters,
        column_mapping=mappings,
        initial_selected=initial_columns,
        multiselect=True
    )

    return gr.Leaderboard(
        value=renamed_df,
        datatype=[c.type for c in fields(column_class)],
        select_columns=smart_columns,
        search_columns=["Method"],
        hide_columns=[],
        interactive=False
    )


# def init_leaderboard_mib_subgraph(dataframe, track):
#     """Initialize the subgraph leaderboard with group-based column selection."""
#     if dataframe is None or dataframe.empty:
#         raise ValueError("Leaderboard DataFrame is empty or None.")

#     print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
    
#     # Create selection mapping for benchmark groups
#     selection_mapping = {}
    
#     # Create benchmark groups with descriptive names
#     for task in TasksMib_Subgraph:
#         benchmark = task.value.benchmark
#         # Get all columns for this benchmark's models
#         benchmark_cols = [
#             f"{benchmark}_{model}"
#             for model in task.value.models
#             if f"{benchmark}_{model}" in dataframe.columns
#         ]
#         if benchmark_cols:
#             # Use a descriptive group name as the key
#             group_name = f"Benchmark: {benchmark.upper()}"
#             selection_mapping[group_name] = benchmark_cols
#             print(f"\n{group_name} maps to:", benchmark_cols)

#     # Create model groups with descriptive names
#     all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
#     for model in all_models:
#         # Get all columns for this model across benchmarks
#         model_cols = [
#             f"{task.value.benchmark}_{model}"
#             for task in TasksMib_Subgraph
#             if model in task.value.models
#             and f"{task.value.benchmark}_{model}" in dataframe.columns
#         ]
#         if model_cols:
#             # Use a descriptive group name as the key
#             group_name = f"Model: {model}"
#             selection_mapping[group_name] = model_cols
#             print(f"\n{group_name} maps to:", model_cols)

#     # The selection options are the group names
#     selection_options = list(selection_mapping.keys())
#     print("\nSelection options:", selection_options)

#     return Leaderboard(
#         value=dataframe,
#         datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
#         select_columns=SelectColumns(
#             default_selection=selection_options,  # Show all groups by default
#             label="Select Benchmark or Model Groups:"
#         ),
#         search_columns=["Method"],
#         hide_columns=[],
#         interactive=False,
#     )








def init_leaderboard_mib_causalgraph(dataframe, track):
    # print("Debugging column issues:")
    # print("\nActual DataFrame columns:")
    # print(dataframe.columns.tolist())
    
    # print("\nExpected columns for Leaderboard:")
    expected_cols = [c.name for c in fields(AutoEvalColumn_mib_causalgraph)]
    # print(expected_cols)
    
    # print("\nMissing columns:")
    missing_cols = [col for col in expected_cols if col not in dataframe.columns]
    # print(missing_cols)
    
    # print("\nSample of DataFrame content:")
    # print(dataframe.head().to_string())

    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn_mib_causalgraph)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=["Method"],
        hide_columns=[c.name for c in fields(AutoEvalColumn_mib_causalgraph) if c.hidden],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )

def init_leaderboard_mib_causalgraph(dataframe, track):
    # print("Debugging column issues:")
    # print("\nActual DataFrame columns:")
    # print(dataframe.columns.tolist())
    
    # Create only necessary columns
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn_mib_causalgraph)],
        select_columns=SelectColumns(
            default_selection=["Method"],  # Start with just Method column
            cant_deselect=["Method"],      # Method column should always be visible
            label="Select Columns to Display:",
        ),
        search_columns=["Method"],
        hide_columns=[],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )


def init_leaderboard(dataframe, track):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    # filter for correct track
    dataframe = dataframe.loc[dataframe["Track"] == track]

    # print(f"\n\n\n dataframe is {dataframe}\n\n\n")
    
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=[AutoEvalColumn.model.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )

def process_json(temp_file):
    if temp_file is None:
        return {}

    # Handle file upload
    try:
        file_path = temp_file.name
        if file_path.endswith('.gz'):
            with gzip.open(file_path, 'rt') as f:
                data = json.load(f)
        else:
            with open(file_path, 'r') as f:
                data = json.load(f)
    except Exception as e:
        raise gr.Error(f"Error processing file: {str(e)}")

    gr.Markdown("Upload successful!")
    return data


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        # with gr.TabItem("Strict", elem_id="strict-benchmark-tab-table", id=0):
        #     leaderboard = init_leaderboard(LEADERBOARD_DF, "strict")
        # with gr.TabItem("Strict-small", elem_id="strict-small-benchmark-tab-table", id=1):
        #     leaderboard = init_leaderboard(LEADERBOARD_DF, "strict-small")
        # with gr.TabItem("Multimodal", elem_id="multimodal-benchmark-tab-table", id=2):
        #     leaderboard = init_leaderboard(LEADERBOARD_DF_MULTIMODAL, "multimodal")

        # with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=4):
        #     gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
 
        # with gr.TabItem("πŸ‘Ά Submit", elem_id="llm-benchmark-tab-table", id=5):
        #     with gr.Column():
        #         with gr.Row():                                                                                                           
        #             gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
        
        # with gr.TabItem("Subgraph", elem_id="subgraph", id=0):
        #     leaderboard = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph")
        with gr.TabItem("Subgraph", elem_id="subgraph", id=0):
            # Add description for filters
            gr.Markdown("""
            ### Filtering Options
            Use the dropdown menus below to filter results by specific tasks or models. 
            You can combine filters to see specific task-model combinations.
            """)
            leaderboard = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH, "Subgraph")
    
        # Then modify the Causal Graph tab section
        with gr.TabItem("Causal Graph", elem_id="causalgraph", id=1):
            with gr.Tabs() as causalgraph_tabs:
                with gr.TabItem("Detailed View", id=0):
                    leaderboard_detailed = init_leaderboard_mib_causalgraph(
                        LEADERBOARD_DF_MIB_CAUSALGRAPH_DETAILED, 
                        "Causal Graph"
                    )
                with gr.TabItem("Aggregated View", id=1):
                    leaderboard_aggregated = init_leaderboard_mib_causalgraph(
                        LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED, 
                        "Causal Graph"
                    )
                with gr.TabItem("Intervention Averaged", id=2):
                    leaderboard_averaged = init_leaderboard_mib_causalgraph(
                        LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED, 
                        "Causal Graph"
                    )
        
    # with gr.Row():
    #     with gr.Accordion("πŸ“™ Citation", open=False):
    #         citation_button = gr.Textbox(
    #             value=CITATION_BUTTON_TEXT,
    #             label=CITATION_BUTTON_LABEL,
    #             lines=20,
    #             elem_id="citation-button",
    #             show_copy_button=True,
    #         )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.launch(share=True, ssr_mode=False)