Spaces:
Running
Running
File size: 36,655 Bytes
32dbb08 3c343e0 32dbb08 44212b3 32dbb08 1d8e193 32dbb08 5ed4bca 32dbb08 5dd7582 32dbb08 61542b8 32dbb08 5dd7582 32dbb08 3c343e0 5ed4bca ce5dc65 7086c8a 4a9cf40 8a4a40c b624a39 8a4a40c c7c77b6 8a4a40c c7c77b6 8a4a40c c7c77b6 8a4a40c c33e0a8 8a4a40c c33e0a8 8a4a40c c33e0a8 c7c77b6 8a4a40c c33e0a8 c7c77b6 c33e0a8 8a4a40c c7c77b6 200beb2 1d8e193 200beb2 8a4a40c 32dbb08 ce5dc65 3c343e0 32dbb08 3c343e0 32dbb08 3c343e0 32dbb08 3c343e0 32dbb08 cd60bd0 3c343e0 cd60bd0 c57e76c b624a39 32dbb08 3c343e0 5ed4bca 5dd7582 f585ea0 ad60993 3c343e0 f585ea0 32dbb08 5ed4bca e1faa87 9fd4b06 e1faa87 9fd4b06 e1faa87 9fd4b06 09666ed c50d688 09666ed ef71549 015ea11 1d8e193 015ea11 1d8e193 015ea11 09666ed 1d8e193 09666ed 46d6b73 09666ed ef71549 09666ed 00daaaf 09666ed ee8caf2 447b70d 1d8e193 09666ed 0101cf1 09666ed 1d8e193 09666ed 1d8e193 2ba536b 29eaa40 4493851 7086c8a 2ba536b 7086c8a 2ba536b 7086c8a 475701c 76717d0 475701c 7086c8a 475701c 7086c8a 2ba536b 44212b3 4493851 7086c8a 4493851 7086c8a 4493851 7086c8a 4493851 06e8556 32dbb08 b624a39 32dbb08 1d8e193 44212b3 475701c 44212b3 1d8e193 475701c 44212b3 1d8e193 44212b3 1d8e193 44212b3 1d8e193 44212b3 1d8e193 44212b3 1d8e193 44212b3 3e61985 1d8e193 44212b3 b624a39 44212b3 3e61985 c4686cc 3e61985 b624a39 c4686cc 3e61985 c4686cc 3e61985 44212b3 1d8e193 b624a39 32dbb08 7086c8a 1d8e193 5ed4bca 1d8e193 44212b3 1d8e193 44212b3 1d8e193 3e61985 1d8e193 44212b3 1d8e193 3e61985 44212b3 3e61985 1d8e193 5ed4bca 1d8e193 44212b3 1d8e193 44212b3 1d8e193 3e61985 1d8e193 44212b3 1d8e193 3e61985 44212b3 3e61985 1d8e193 53c7136 f585ea0 7086c8a f585ea0 a2e0e8f 7086c8a 44212b3 475701c 44212b3 475701c 44212b3 7086c8a 44212b3 7086c8a f585ea0 7086c8a 3e61985 44212b3 3e61985 44212b3 7086c8a 3e61985 7086c8a a2e0e8f 475701c a2e0e8f 475701c a2e0e8f 7086c8a f585ea0 a2e0e8f 3e61985 a2e0e8f 3e61985 a2e0e8f 3e61985 a2e0e8f 32dbb08 5ed4bca b624a39 33ddef9 b624a39 33ddef9 5ed4bca 3c343e0 5ed4bca b624a39 3c343e0 b624a39 33ddef9 b624a39 e1faa87 b624a39 3c343e0 b624a39 3c343e0 b624a39 3c343e0 b624a39 e1faa87 3c343e0 b624a39 3c343e0 5ed4bca 3c343e0 b624a39 5ed4bca 3c343e0 b624a39 3c343e0 e1faa87 b624a39 3c343e0 b624a39 3c343e0 e1faa87 3c343e0 e1faa87 3c343e0 5ed4bca 3c343e0 b624a39 e1faa87 3c343e0 b624a39 3c343e0 5ed4bca e1faa87 5ed4bca e1faa87 5ed4bca e1faa87 5ed4bca e1faa87 5ed4bca 3c343e0 b624a39 11e2149 b624a39 11e2149 32dbb08 3c343e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 |
import json
import gzip
import os
import shutil
import secrets
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
import numpy as np
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from io import StringIO
from typing import Dict, List, Optional
from dataclasses import dataclass, field
from copy import deepcopy
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT_SUBGRAPH, EVALUATION_QUEUE_TEXT_CAUSALVARIABLE,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS_MIB_SUBGRAPH,
COLS,
COLS_MIB_SUBGRAPH,
COLS_MULTIMODAL,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
AutoEvalColumn_mib_subgraph,
AutoEvalColumn_mib_causalgraph,
fields,
)
from src.envs import API, EVAL_REQUESTS_SUBGRAPH, EVAL_REQUESTS_CAUSALGRAPH, QUEUE_REPO_SUBGRAPH, QUEUE_REPO_CAUSALGRAPH, REPO_ID, TOKEN, RESULTS_REPO_MIB_SUBGRAPH, EVAL_RESULTS_MIB_SUBGRAPH_PATH, RESULTS_REPO_MIB_CAUSALGRAPH, EVAL_RESULTS_MIB_CAUSALGRAPH_PATH
from src.populate import get_evaluation_queue_df, get_leaderboard_df_mib_subgraph, get_leaderboard_df_mib_causalgraph
from src.submission.submit import upload_to_queue, remove_submission
from src.submission.check_validity import verify_circuit_submission, verify_causal_variable_submission, check_rate_limit, parse_huggingface_url
from src.about import TasksMib_Subgraph, TasksMib_Causalgraph
from gradio_leaderboard import SelectColumns, Leaderboard
import pandas as pd
from typing import List, Dict, Optional
from dataclasses import fields
import math
class SmartSelectColumns(SelectColumns):
"""
Enhanced SelectColumns component matching exact original parameters.
"""
def __init__(
self,
benchmark_keywords: Optional[List[str]] = None,
model_keywords: Optional[List[str]] = None,
initial_selected: Optional[List[str]] = None,
label: Optional[str] = None,
show_label: bool = True,
info: Optional[str] = None,
allow: bool = True
):
# Match exact parameters from working SelectColumns
super().__init__(
default_selection=initial_selected or [],
cant_deselect=[],
allow=allow,
label=label,
show_label=show_label,
info=info
)
self.benchmark_keywords = benchmark_keywords or []
self.model_keywords = model_keywords or []
# Store groups for later use
self._groups = {}
def get_filtered_groups(self, columns: List[str]) -> Dict[str, List[str]]:
"""Get column groups based on keywords."""
filtered_groups = {}
# Add benchmark groups
for benchmark in self.benchmark_keywords:
matching_cols = [
col for col in columns
if benchmark in col.lower()
]
if matching_cols:
filtered_groups[f"Benchmark group for {benchmark}"] = matching_cols
# Add model groups
for model in self.model_keywords:
matching_cols = [
col for col in columns
if model in col.lower()
]
if matching_cols:
filtered_groups[f"Model group for {model}"] = matching_cols
self._groups = filtered_groups
return filtered_groups
import re
@dataclass
class SubstringSelectColumns(SelectColumns):
"""
Extends SelectColumns to support filtering columns by predefined substrings.
When a substring is selected, all columns containing that substring will be selected.
"""
substring_groups: Dict[str, List[str]] = field(default_factory=dict)
selected_substrings: List[str] = field(default_factory=list)
def __post_init__(self):
# Ensure default_selection is a list
if self.default_selection is None:
self.default_selection = []
# Build reverse mapping of column to substrings
self.column_to_substrings = {}
for substring, patterns in self.substring_groups.items():
for pattern in patterns:
# Convert glob-style patterns to regex
regex = re.compile(pattern.replace('*', '.*'))
# Find matching columns in default_selection
for col in self.default_selection:
if regex.search(col):
if col not in self.column_to_substrings:
self.column_to_substrings[col] = []
self.column_to_substrings[col].append(substring)
# Apply initial substring selections
if self.selected_substrings:
self.update_selection_from_substrings()
def update_selection_from_substrings(self) -> List[str]:
"""
Updates the column selection based on selected substrings.
Returns the new list of selected columns.
"""
selected_columns = self.cant_deselect.copy()
# If no substrings selected, show all columns
if not self.selected_substrings:
selected_columns.extend([
col for col in self.default_selection
if col not in self.cant_deselect
])
return selected_columns
# Add columns that match any selected substring
for col, substrings in self.column_to_substrings.items():
if any(s in self.selected_substrings for s in substrings):
if col not in selected_columns:
selected_columns.append(col)
return selected_columns
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation - refresh caches
try:
if os.path.exists(EVAL_REQUESTS_SUBGRAPH):
shutil.rmtree(EVAL_REQUESTS_SUBGRAPH)
snapshot_download(
repo_id=QUEUE_REPO_SUBGRAPH, local_dir=EVAL_REQUESTS_SUBGRAPH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
if os.path.exists(EVAL_REQUESTS_CAUSALGRAPH):
shutil.rmtree(EVAL_REQUESTS_CAUSALGRAPH)
snapshot_download(
repo_id=QUEUE_REPO_CAUSALGRAPH, local_dir=EVAL_REQUESTS_CAUSALGRAPH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
if os.path.exists(EVAL_RESULTS_MIB_SUBGRAPH_PATH):
shutil.rmtree(EVAL_RESULTS_MIB_SUBGRAPH_PATH)
snapshot_download(
repo_id=RESULTS_REPO_MIB_SUBGRAPH, local_dir=EVAL_RESULTS_MIB_SUBGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
if os.path.exists(EVAL_RESULTS_MIB_CAUSALGRAPH_PATH):
shutil.rmtree(EVAL_RESULTS_MIB_CAUSALGRAPH_PATH)
snapshot_download(
repo_id=RESULTS_REPO_MIB_CAUSALGRAPH, local_dir=EVAL_RESULTS_MIB_CAUSALGRAPH_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
def _sigmoid(x):
try:
return 1 / (1 + math.exp(-2 * (x-1)))
except:
return "-"
LEADERBOARD_DF_MIB_SUBGRAPH_FPL = get_leaderboard_df_mib_subgraph(EVAL_RESULTS_MIB_SUBGRAPH_PATH, COLS_MIB_SUBGRAPH, BENCHMARK_COLS_MIB_SUBGRAPH)
LEADERBOARD_DF_MIB_SUBGRAPH_FEQ = get_leaderboard_df_mib_subgraph(EVAL_RESULTS_MIB_SUBGRAPH_PATH, COLS_MIB_SUBGRAPH, BENCHMARK_COLS_MIB_SUBGRAPH,
metric_type="CMD")
# In app.py, modify the LEADERBOARD initialization
LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED, LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED = get_leaderboard_df_mib_causalgraph(
EVAL_RESULTS_MIB_CAUSALGRAPH_PATH
)
(
finished_eval_queue_df_subgraph,
pending_eval_queue_df_subgraph,
) = get_evaluation_queue_df(EVAL_REQUESTS_SUBGRAPH, EVAL_COLS, "Circuit")
(
finished_eval_queue_df_causalvariable,
pending_eval_queue_df_causalvariable,
) = get_evaluation_queue_df(EVAL_REQUESTS_CAUSALGRAPH, EVAL_COLS, "Causal Variable")
finished_eval_queue = pd.concat((finished_eval_queue_df_subgraph, finished_eval_queue_df_causalvariable))
pending_eval_queue = pd.concat((pending_eval_queue_df_subgraph, pending_eval_queue_df_causalvariable))
def init_leaderboard_mib_subgraph(dataframe, track):
"""Initialize the subgraph leaderboard with display names for better readability."""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
print("\nDebugging DataFrame columns:", dataframe.columns.tolist())
model_name_mapping = {
"qwen2_5": "Qwen-2.5",
"gpt2": "GPT-2",
"gemma2": "Gemma-2",
"llama3": "Llama-3.1"
}
benchmark_mapping = {
"ioi": "IOI",
"mcqa": "MCQA",
"arithmetic_addition": "Arithmetic (+)",
"arithmetic_subtraction": "Arithmetic (-)",
"arc_easy": "ARC (Easy)",
"arc_challenge": "ARC (Challenge)"
}
display_mapping = {}
for task in TasksMib_Subgraph:
for model in task.value.models:
field_name = f"{task.value.benchmark}_{model}"
display_name = f"{benchmark_mapping[task.value.benchmark]} - {model_name_mapping[model]}"
display_mapping[field_name] = display_name
# Now when creating benchmark groups, we'll use display names
benchmark_groups = []
for task in TasksMib_Subgraph:
benchmark = task.value.benchmark
benchmark_cols = [
display_mapping[f"{benchmark}_{model}"] # Use display name from our mapping
for model in task.value.models
if f"{benchmark}_{model}" in dataframe.columns
]
if benchmark_cols:
benchmark_groups.append(benchmark_cols)
print(f"\nBenchmark group for {benchmark}:", benchmark_cols)
# Similarly for model groups
model_groups = []
all_models = list(set(model for task in TasksMib_Subgraph for model in task.value.models))
for model in all_models:
model_cols = [
display_mapping[f"{task.value.benchmark}_{model}"] # Use display name
for task in TasksMib_Subgraph
if model in task.value.models
and f"{task.value.benchmark}_{model}" in dataframe.columns
]
if model_cols:
model_groups.append(model_cols)
print(f"\nModel group for {model}:", model_cols)
# Combine all groups using display names
all_groups = benchmark_groups + model_groups
all_columns = [col for group in all_groups for col in group]
renamed_df = dataframe.rename(columns=display_mapping)
all_columns = renamed_df.columns.tolist()
# Original code
return Leaderboard(
value=renamed_df, # Use DataFrame with display names
datatype=[c.type for c in fields(AutoEvalColumn_mib_subgraph)],
search_columns=["Method"],
hide_columns=["eval_name"],
interactive=False,
), renamed_df
def init_leaderboard_mib_causalgraph(dataframe, track):
model_name_mapping = {
"Qwen2ForCausalLM": "Qwen-2.5",
"GPT2ForCausalLM": "GPT-2",
"GPT2LMHeadModel": "GPT-2",
"Gemma2ForCausalLM": "Gemma-2",
"LlamaForCausalLM": "Llama-3.1"
}
benchmark_mapping = {
"ioi_task": "IOI",
"4_answer_MCQA": "MCQA",
"arithmetic_addition": "Arithmetic (+)",
"arithmetic_subtraction": "Arithmetic (-)",
"ARC_easy": "ARC (Easy)",
"RAVEL": "RAVEL"
}
target_variables_mapping = {
"output_token": "Output Token",
"output_position": "Output Position",
"answer_pointer": "Answer Pointer",
"answer": "Answer",
"Continent": "Continent",
"Language": "Language",
"Country": "Country",
"Language": "Language"
}
display_mapping = {}
for task in TasksMib_Causalgraph:
for model in task.value.models:
for target_variables in task.value.target_variables:
field_name = f"{model}_{task.value.col_name}_{target_variables}"
display_name = f"{benchmark_mapping[task.value.col_name]} - {model_name_mapping[model]} - {target_variables_mapping[target_variables]}"
display_mapping[field_name] = display_name
renamed_df = dataframe.rename(columns=display_mapping)
# Create only necessary columns
return Leaderboard(
value=renamed_df,
datatype=[c.type for c in fields(AutoEvalColumn_mib_causalgraph)],
search_columns=["Method"],
hide_columns=["eval_name"],
bool_checkboxgroup_label="Hide models",
interactive=False,
), renamed_df
def init_leaderboard(dataframe, track):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
# filter for correct track
dataframe = dataframe.loc[dataframe["Track"] == track]
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def process_json(temp_file):
if temp_file is None:
return {}
# Handle file upload
try:
file_path = temp_file.name
if file_path.endswith('.gz'):
with gzip.open(file_path, 'rt') as f:
data = json.load(f)
else:
with open(file_path, 'r') as f:
data = json.load(f)
except Exception as e:
raise gr.Error(f"Error processing file: {str(e)}")
gr.Markdown("Upload successful!")
return data
def get_hf_username(hf_repo):
hf_repo = hf_repo.rstrip("/")
parts = hf_repo.split("/")
username = parts[-2]
return username
# Define the preset substrings for filtering
PRESET_SUBSTRINGS = ["IOI", "MCQA", "Arithmetic", "ARC", "GPT-2", "Qwen-2.5", "Gemma-2", "Llama-3.1"]
TASK_SUBSTRINGS = ["IOI", "MCQA", "Arithmetic", "ARC"]
TASK_CAUSAL_SUBSTRINGS = ["IOI", "MCQA", "ARC (Easy)", "RAVEL"]
MODEL_SUBSTRINGS = ["GPT-2", "Qwen-2.5", "Gemma-2", "Llama-3.1"]
def filter_columns_by_substrings(dataframe: pd.DataFrame, selected_task_substrings: List[str],
selected_model_substrings: List[str]) -> pd.DataFrame:
"""
Filter columns based on the selected substrings.
"""
original_dataframe = deepcopy(dataframe)
if not selected_task_substrings and not selected_model_substrings:
return dataframe # No filtering if no substrings are selected
if not selected_task_substrings:
# Filter columns that contain any of the selected model substrings
filtered_columns = [
col for col in dataframe.columns
if any(sub.lower() in col.lower() for sub in selected_model_substrings)
or col == "Method"
]
return dataframe[filtered_columns]
elif not selected_model_substrings:
# Filter columns that contain any of the selected task substrings
filtered_columns = [
col for col in dataframe.columns
if any(sub.lower() in col.lower() for sub in selected_task_substrings)
or col == "Method"
]
return dataframe[filtered_columns]
# Filter columns by task first. Use AND logic to combine with model filtering
filtered_columns = [
col for col in dataframe.columns
if any(sub.lower() in col.lower() for sub in selected_task_substrings)
or col == "Method"
]
filtered_columns = [
col for col in dataframe[filtered_columns].columns
if any(sub.lower() in col.lower() for sub in selected_model_substrings)
or col == "Method"
]
return dataframe[filtered_columns]
def update_leaderboard(dataframe: pd.DataFrame, selected_task_substrings: List[str],
selected_model_substrings: List[str], ascending: bool = False):
"""
Update the leaderboard based on the selected substrings.
"""
filtered_dataframe = filter_columns_by_substrings(dataframe, selected_task_substrings, selected_model_substrings)
if len(selected_task_substrings) >= 2 or len(selected_task_substrings) == 0:
if len(selected_model_substrings) >= 2 or len(selected_model_substrings) == 0:
show_average = True
else:
show_average = False
else:
show_average = False
def _transform_floats(df):
df_transformed = df.copy()
# Apply transformation row by row
for i, row in df_transformed.iterrows():
# Apply sigmoid only to numeric values in the row
df_transformed.loc[i] = row.apply(lambda x: _sigmoid(x) if isinstance(x, (float, int)) else x)
return df_transformed
if show_average:
# Replace "-" with NaN for calculation, then use skipna=False to get NaN when any value is missing
numeric_data = filtered_dataframe.replace("-", np.nan)
means = numeric_data.mean(axis=1, skipna=False)
# Apply the same transformation for computing scores
s_filtered_dataframe = _transform_floats(filtered_dataframe)
s_numeric_data = s_filtered_dataframe.replace("-", np.nan)
s_means = s_numeric_data.mean(axis=1, skipna=False)
# Set Average and Score columns
# Keep numeric values as NaN for proper sorting, convert to "-" only for display if needed
filtered_dataframe.loc[:, "Average"] = means.round(2)
filtered_dataframe.loc[:, "Score"] = s_means.round(2)
# Sort by Average with NaN values at the end
filtered_dataframe = filtered_dataframe.sort_values(by=["Average"], ascending=ascending, na_position='last')
# After sorting, convert NaN back to "-" for display
filtered_dataframe.loc[:, "Average"] = filtered_dataframe["Average"].fillna("-")
filtered_dataframe.loc[:, "Score"] = filtered_dataframe["Score"].fillna("-")
return filtered_dataframe
def process_url(url):
# Add your URL processing logic here
return f"You entered the URL: {url}"
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("Circuit Localization", elem_id="subgraph", id=0):
with gr.Tabs() as subgraph_tabs:
with gr.TabItem("CPR", id=0):
# Add description for filters
gr.Markdown("""
### Filtering Options
Use the dropdown menus below to filter results by specific tasks or models.
You can combine filters to see specific task-model combinations.
""")
# CheckboxGroup for selecting substrings
task_substring_checkbox = gr.CheckboxGroup(
choices=TASK_SUBSTRINGS,
label="View tasks:",
value=TASK_SUBSTRINGS, # Default to all substrings selected
)
model_substring_checkbox = gr.CheckboxGroup(
choices = MODEL_SUBSTRINGS,
label = "View models:",
value = MODEL_SUBSTRINGS
)
leaderboard, data = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH_FPL, "Subgraph")
original_leaderboard = gr.State(value=data)
ascending = gr.State(value=False)
# Update the leaderboard when the user selects/deselects substrings
task_substring_checkbox.change(
fn=update_leaderboard,
inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox, ascending],
outputs=leaderboard
)
model_substring_checkbox.change(
fn=update_leaderboard,
inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox, ascending],
outputs=leaderboard
)
print(f"Leaderboard is {leaderboard}")
with gr.TabItem("CMD", id=1):
# Add description for filters
gr.Markdown("""
### Filtering Options
Use the dropdown menus below to filter results by specific tasks or models.
You can combine filters to see specific task-model combinations.
""")
# CheckboxGroup for selecting substrings
task_substring_checkbox = gr.CheckboxGroup(
choices=TASK_SUBSTRINGS,
label="View tasks:",
value=TASK_SUBSTRINGS, # Default to all substrings selected
)
model_substring_checkbox = gr.CheckboxGroup(
choices = MODEL_SUBSTRINGS,
label = "View models:",
value = MODEL_SUBSTRINGS
)
leaderboard, data = init_leaderboard_mib_subgraph(LEADERBOARD_DF_MIB_SUBGRAPH_FEQ, "Subgraph")
original_leaderboard = gr.State(value=data)
ascending = gr.State(value=True)
# Update the leaderboard when the user selects/deselects substrings
task_substring_checkbox.change(
fn=update_leaderboard,
inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox, ascending],
outputs=leaderboard
)
model_substring_checkbox.change(
fn=update_leaderboard,
inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox, ascending],
outputs=leaderboard
)
print(f"Leaderboard is {leaderboard}")
# Then modify the Causal Graph tab section
with gr.TabItem("Causal Variable Localization", elem_id="causalgraph", id=1):
with gr.Tabs() as causalgraph_tabs:
with gr.TabItem("Highest View", id=0):
gr.Markdown("""
### Filtering Options
Use the dropdown menus below to filter results by specific tasks or models.
You can combine filters to see specific task-model combinations.
""")
task_substring_checkbox = gr.CheckboxGroup(
choices=TASK_CAUSAL_SUBSTRINGS,
label="View tasks:",
value=TASK_CAUSAL_SUBSTRINGS, # Default to all substrings selected
)
model_substring_checkbox = gr.CheckboxGroup(
choices = MODEL_SUBSTRINGS,
label = "View models:",
value = MODEL_SUBSTRINGS
)
leaderboard_aggregated, data = init_leaderboard_mib_causalgraph(
LEADERBOARD_DF_MIB_CAUSALGRAPH_AGGREGATED,
"Causal Graph"
)
original_leaderboard = gr.State(value=data)
ascending = gr.State(value=False)
task_substring_checkbox.change(
fn=update_leaderboard,
inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox, ascending],
outputs=leaderboard_aggregated
)
model_substring_checkbox.change(
fn=update_leaderboard,
inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox, ascending],
outputs=leaderboard_aggregated
)
with gr.TabItem("Averaged View", id=1):
task_substring_checkbox = gr.CheckboxGroup(
choices=TASK_CAUSAL_SUBSTRINGS,
label="View tasks:",
value=TASK_CAUSAL_SUBSTRINGS, # Default to all substrings selected
)
model_substring_checkbox = gr.CheckboxGroup(
choices = MODEL_SUBSTRINGS,
label = "View models:",
value = MODEL_SUBSTRINGS
)
leaderboard_averaged, data = init_leaderboard_mib_causalgraph(
LEADERBOARD_DF_MIB_CAUSALGRAPH_AVERAGED,
"Causal Graph"
)
original_leaderboard = gr.State(value=data)
ascending = gr.State(value=False)
task_substring_checkbox.change(
fn=update_leaderboard,
inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox, ascending],
outputs=leaderboard_averaged
)
model_substring_checkbox.change(
fn=update_leaderboard,
inputs=[original_leaderboard, task_substring_checkbox, model_substring_checkbox, ascending],
outputs=leaderboard_averaged
)
with gr.TabItem("Submit", elem_id="llm-benchmark-tab-table", id=2):
# Track selection
track = gr.Radio(
choices=[
"Circuit Localization Track",
"Causal Variable Localization Track"
],
label="Select Competition Track",
elem_id="track_selector"
)
with gr.Column(visible=False, elem_id="bordered-column") as circuit_ui:
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT_SUBGRAPH, elem_classes="markdown-text")
with gr.Row():
hf_repo_circ = gr.Textbox(
label="HuggingFace Repository URL",
placeholder="https://huggingface.co/username/repo/path",
info="Must be a valid HuggingFace URL pointing to folders containing either 1 importance score file per task/model, or " \
"9 circuit files per task/model (.json or .pt)."
)
level = gr.Radio(
choices=[
"Edge",
"Node (submodule)",
"Node (neuron)"
],
label="Level of granularity",
info="Is your circuit defined by its inclusion/exclusion of certain edges (e.g., MLP1 to H10L12), of certain submodules (e.g., MLP1), or of neurons " \
"within those submodules (e.g., MLP1 neuron 295)?"
)
with gr.Column(visible=False, elem_id="bordered-column") as causal_ui:
gr.Markdown(EVALUATION_QUEUE_TEXT_CAUSALVARIABLE, elem_classes="markdown-text")
with gr.Row():
hf_repo_cg = gr.Textbox(
label="HuggingFace Repository URL",
placeholder="https://huggingface.co/username/repo/path",
info="Must be a valid HuggingFace URL pointing to a file containing the trained featurizer (.pt). " )
# Common fields
with gr.Group():
gr.Markdown("### Submission Information")
method_name = gr.Textbox(label="Method Name")
contact_email = gr.Textbox(label="Contact Email")
# Dynamic UI logic
def toggle_ui(track):
circuit = track == "Circuit Localization Track"
causal = not circuit
return {
circuit_ui: gr.Group(visible=circuit),
causal_ui: gr.Group(visible=causal)
}
track.change(toggle_ui, track, [circuit_ui, causal_ui])
# Submission handling
status = gr.Textbox(label="Submission Status", visible=False)
def handle_submission(track, hf_repo_circ, hf_repo_cg, level, method_name, contact_email):
errors = []
warnings = []
breaking_error = False
hf_repo = hf_repo_circ if "Circuit" in track else hf_repo_cg
# Validate common fields
if not method_name.strip():
errors.append("Method name is required")
if "@" not in contact_email or "." not in contact_email:
errors.append("Valid email address is required")
if "Circuit" in track and not level:
errors.append("Level of granularity is required")
if not hf_repo.startswith("https://huggingface.co/") and not hf_repo.startswith("http://huggingface.co/"):
errors.append(f"Invalid HuggingFace URL - must start with https://huggingface.co/")
breaking_error = True
else:
repo_id, subfolder, revision = parse_huggingface_url(hf_repo)
if repo_id is None:
errors.append("Could not read username or repo name from HF URL")
breaking_error = True
else:
user_name, repo_name = repo_id.split("/")
under_rate_limit, time_left = check_rate_limit(track, user_name, contact_email)
if not under_rate_limit:
errors.append(f"Rate limit exceeded (max 2 submissions per week). Please try again in {time_left}. " \
"(If you're trying again after a failed validation, either remove the previous entry below or try again in about 30 minutes.")
breaking_error = True
# Track-specific validation
if "Circuit" in track and not breaking_error:
submission_errors, submission_warnings = verify_circuit_submission(hf_repo, level)
elif not breaking_error:
submission_errors, submission_warnings = verify_causal_variable_submission(hf_repo)
if not breaking_error:
errors.extend(submission_errors)
warnings.extend(submission_warnings)
_id = secrets.token_urlsafe(12)
if errors:
return [
gr.Textbox("\n".join(f"β {e}" for e in errors), visible=True),
None, None,
gr.Column(visible=False),
]
elif warnings:
return [
gr.Textbox("Warnings:", visible=True),
gr.Markdown("\n\n".join(f"β’ {w}" for w in warnings)),
(track, hf_repo_circ, hf_repo_cg, level, method_name, contact_email, _id),
gr.Column(visible=True)
]
else:
return upload_to_queue(track, hf_repo_circ, hf_repo_cg, level, method_name, contact_email, _id)
# New warning confirmation dialog
warning_modal = gr.Column(visible=False, variant="panel")
with warning_modal:
gr.Markdown("### β οΈ Submission Warnings")
warning_display = gr.Markdown()
proceed_btn = gr.Button("Proceed Anyway", variant="secondary")
cancel_btn = gr.Button("Cancel Submission", variant="primary")
# Store submission data between callbacks
pending_submission = gr.State()
submit_btn = gr.Button("Submit Entry", variant="primary")
submit_btn.click(
handle_submission,
inputs=[track, hf_repo_circ, hf_repo_cg, level, method_name, contact_email],
outputs=[status, warning_display, pending_submission, warning_modal]
)
proceed_btn.click(
lambda x: upload_to_queue(*x),
inputs=pending_submission,
outputs=[status, warning_display, pending_submission, warning_modal]
)
cancel_btn.click(
lambda: [gr.Textbox("Submission canceled.", visible=True), None, None, gr.Column(visible=False)],
outputs=[status, warning_display, pending_submission, warning_modal]
)
with gr.Column():
with gr.Accordion(
f"β
Finished Evaluations ({len(finished_eval_queue)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β³ Pending Evaluation Queue ({len(pending_eval_queue)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Group():
gr.Markdown("### Remove Submission from Queue")
with gr.Row():
name_r = gr.Textbox(label="Method Name")
_id_r = gr.Textbox(label = "Submission ID")
status_r = gr.Textbox(label="Removal Status", visible=False)
remove_button = gr.Button("Remove Entry")
remove_button.click(
remove_submission,
inputs=[track, name_r, _id_r],
outputs=[status_r]
)
# Add info about rate limits
gr.Markdown("""
### Submission Policy
- Maximum 2 valid submissions per HuggingFace account per week
- Invalid submissions don't count toward your limit
- Rate limit tracked on a rolling basis: a submission no longer counts toward the limit as soon as 7 days have passed since the submission time
- The queues can take up to an hour to update; don't fret if your submission doesn't show up immediately!
""")
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=10,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(share=True, ssr_mode=False) |