File size: 14,629 Bytes
1dfef0f
26f5620
03aebad
836d49c
26f5620
cd8de6f
 
26f5620
 
 
 
cd8de6f
 
26f5620
 
 
b0eca46
26f5620
87c8549
16c9822
 
 
01cc5e8
b7e4e52
aaf11bc
9b810cb
b7e4e52
 
3fb3844
ff8595b
 
 
95010ac
 
 
9b810cb
93a2770
 
 
6ead180
aaf11bc
c63d0c0
 
eca192a
c63d0c0
 
03aebad
 
26f5620
 
 
 
 
 
 
 
037cb93
26f5620
 
 
 
 
 
 
 
 
037cb93
 
26f5620
 
 
 
 
 
 
 
7240bca
 
26f5620
 
 
 
 
 
 
 
 
 
7240bca
 
26f5620
 
 
 
 
 
 
 
7240bca
26f5620
 
 
1dfef0f
26f5620
 
 
 
 
 
 
 
 
 
 
 
 
9af2eae
26f5620
 
 
 
 
 
 
7240bca
26f5620
 
 
 
 
1dfef0f
26f5620
 
 
 
 
 
 
 
 
 
 
93a2770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95010ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26f5620
ac6b8be
 
 
 
 
 
 
9027aff
 
ac6b8be
 
 
 
 
 
 
26f5620
 
 
 
 
 
 
70f8384
ac6b8be
 
 
 
 
 
 
 
 
 
 
 
95010ac
 
93a2770
95010ac
ac6b8be
 
 
 
257f406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b810cb
257f406
b7e4e52
46c3b43
 
 
 
257f406
46c3b43
 
 
 
 
 
 
 
 
 
 
 
b7e4e52
46c3b43
 
b7e4e52
 
257f406
b7e4e52
257f406
9b810cb
aaf11bc
6ead180
c63d0c0
 
5e6fa41
c63d0c0
b1f6104
c63d0c0
 
 
79e8949
 
 
 
 
 
 
 
 
c63d0c0
 
 
79e8949
c63d0c0
 
 
 
c53e028
c63d0c0
 
 
358f8ca
 
 
 
c63d0c0
 
92149c4
6ead180
c63d0c0
 
6ead180
c63d0c0
 
9b810cb
 
c63d0c0
6ead180
 
 
 
 
 
 
 
 
 
 
257f406
 
6ead180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94e7570
9b810cb
26f5620
 
 
 
 
 
 
 
 
 
 
9027aff
 
26f5620
9027aff
26f5620
9027aff
26f5620
9027aff
 
7240bca
26f5620
9027aff
 
 
 
 
 
 
26f5620
 
 
 
 
 
a52ceb6
26f5620
4a5b7c8
 
3fb3844
4a5b7c8
 
 
 
 
 
 
 
 
 
3fb3844
4a5b7c8
 
 
 
 
 
 
26f5620
3fb3844
 
26f5620
e844a7f
a1fdb15
 
 
 
 
 
 
 
 
26f5620
 
cd8de6f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
# agent.py

import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
from sentence_transformers import SentenceTransformer
from langchain.embeddings.base import Embeddings
from typing import List
import numpy as np
import yaml

import pandas as pd
import uuid
import requests
import json
from langchain_core.documents import Document
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings

from youtube_transcript_api import YouTubeTranscriptApi
from youtube_transcript_api._errors import TranscriptsDisabled, VideoUnavailable
import re

from langchain_community.document_loaders import TextLoader, PyMuPDFLoader
from docx import Document as DocxDocument
import openpyxl
from io import StringIO

from transformers import BertTokenizer, BertModel
import torch



load_dotenv()

@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers.
    Args:
        a: first int
        b: second int
    """
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a - b

@tool
def divide(a: int, b: int) -> int:
    """Divide two numbers.
    
    Args:
        a: first int
        b: second int
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a % b

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results.
    
    Args:
        query: The search query."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"wiki_results": formatted_search_docs}

@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results.
    
    Args:
        query: The search query."""
    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"web_results": formatted_search_docs}

@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.
    
    Args:
        query: The search query."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ])
    return {"arvix_results": formatted_search_docs}



@tool
def analyze_attachment(file_path: str) -> str:
    """
    Analyzes attachments including PDF, TXT, DOCX, and XLSX files and returns text content.

    Args:
        file_path: Local path to the attachment.
    """
    if not os.path.exists(file_path):
        return f"File not found: {file_path}"

    if file_path.lower().endswith(".pdf"):
        loader = PyMuPDFLoader(file_path)
        documents = loader.load()
        content = "\n\n".join([doc.page_content for doc in documents])

    elif file_path.lower().endswith(".txt"):
        loader = TextLoader(file_path)
        documents = loader.load()
        content = "\n\n".join([doc.page_content for doc in documents])

    elif file_path.lower().endswith(".docx"):
        doc = DocxDocument(file_path)
        content = "\n".join([para.text for para in doc.paragraphs])

    elif file_path.lower().endswith(".xlsx"):
        wb = openpyxl.load_workbook(file_path, data_only=True)
        content = ""
        for sheet in wb:
            content += f"Sheet: {sheet.title}\n"
            for row in sheet.iter_rows(values_only=True):
                content += "\t".join([str(cell) if cell is not None else "" for cell in row]) + "\n"

    else:
        return "Unsupported file format. Please use PDF, TXT, DOCX, or XLSX."

    return content[:3000]  # Limit size for readability


@tool
def get_youtube_transcript(url: str) -> str:
    """
    Fetch transcript text from a YouTube video.
    
    Args:
        url (str): Full YouTube video URL.
    
    Returns:
        str: Transcript text as a single string.
    
    Raises:
        ValueError: If no transcript is available or URL is invalid.
    """
    try:
        # Extract video ID
        video_id = extract_video_id(url)
        transcript = YouTubeTranscriptApi.get_transcript(video_id)

        # Combine all transcript text
        full_text = " ".join([entry['text'] for entry in transcript])
        return full_text

    except (TranscriptsDisabled, VideoUnavailable) as e:
        raise ValueError(f"Transcript not available: {e}")
    except Exception as e:
        raise ValueError(f"Failed to fetch transcript: {e}")

@tool
def extract_video_id(url: str) -> str:
    """
    Extract the video ID from a YouTube URL.
    """
    match = re.search(r"(?:v=|youtu\.be/)([A-Za-z0-9_-]{11})", url)
    if not match:
        raise ValueError("Invalid YouTube URL")
    return match.group(1)




# -----------------------------
# Load configuration from YAML
# -----------------------------
with open("config.yaml", "r") as f:
    config = yaml.safe_load(f)

provider = config["provider"]
model_config = config["models"][provider]

#prompt_path = config["system_prompt_path"]
enabled_tool_names = config["tools"]


# -----------------------------
# Load system prompt
# -----------------------------
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()

# System message
sys_msg = SystemMessage(content=system_prompt)


# -----------------------------
# Map tool names to functions
# -----------------------------
tool_map = {
    "multiply": multiply,
    "add": add,
    "subtract": subtract,
    "divide": divide,
    "modulus": modulus,
    "wiki_search": wiki_search,
    "web_search": web_search,
    "arvix_search": arvix_search,
    "get_youtube_transcript": get_youtube_transcript,
    "extract_video_id": extract_video_id,
    "analyze_attachment": analyze_attachment,
    
}

tools = [tool_map[name] for name in enabled_tool_names]


# -------------------------------
# Step 2: Load the JSON file or tasks (Replace this part if you're loading tasks dynamically)
# -------------------------------
# Here we assume the tasks are already fetched from a URL or file.
# For now, using an example JSON array directly. Replace this with the actual loading logic.

tasks = [
    {
        "task_id": "8e867cd7-cff9-4e6c-867a-ff5ddc2550be",
        "question": "How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)? You can use the latest 2022 version of English Wikipedia.",
        "Level": "1",
        "file_name": ""
    },
    {
        "task_id": "a1e91b78-d3d8-4675-bb8d-62741b4b68a6",
        "question": "In the video https://www.youtube.com/watch?v=L1vXCYZAYYM, what is the highest number of bird species to be on camera simultaneously?",
        "Level": "1",
        "file_name": ""
    }
]

# -------------------------------
# Step 3: Create Documents from Each JSON Object
# -------------------------------
docs = []
for task in tasks:
    # Debugging: Print the keys of each task to ensure 'question' exists
    print(f"Keys in task: {task.keys()}")

    # Ensure the required field 'question' exists
    if 'question' not in task:
        print(f"Skipping task with missing 'question' field: {task}")
        continue

    content = task.get('question', "").strip()
    if not content:
        print(f"Skipping task with empty 'question': {task}")
        continue

    # Add unique ID to each document
    task['id'] = str(uuid.uuid4())

    # Create a document from the task data
    docs.append(Document(page_content=content, metadata=task))



# -------------------------------
# Step 4: Set up HuggingFace Embeddings and FAISS VectorStore
# -------------------------------
# Initialize HuggingFace Embedding model
#embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
#embedding_model = HuggingFaceEmbeddings(model_name="BAAI/bge-base-en-v1.5")



class BERTEmbeddings(Embeddings):
    def __init__(self, model_name='bert-base-uncased'):
        self.tokenizer = BertTokenizer.from_pretrained(model_name)
        self.model = BertModel.from_pretrained(model_name)
        self.model.eval()  # Set to evaluation mode

    def embed_documents(self, texts: List[str]) -> List[List[float]]:
        return self._embed(texts)

    def embed_query(self, text: str) -> List[float]:
        return self._embed([text])[0]

    def _embed(self, texts: List[str]) -> List[List[float]]:
        inputs = self.tokenizer(texts, return_tensors='pt', padding=True, truncation=True)
        with torch.no_grad():
            outputs = self.model(**inputs)
        embeddings = outputs.last_hidden_state.mean(dim=1)  # Mean pooling
        return embeddings.cpu().numpy().tolist()

# Example usage of BERTEmbedding with LangChain

embedding_model = BERTEmbeddings(model_name="bert-base-uncased")

# Sample text (replace with your own text)
docs = [
    Document(page_content="Mercedes Sosa released many albums between 2000 and 2009."),
    Document(page_content="She was a prominent Argentine folk singer."),
    Document(page_content="Her album 'Al Despertar' was released in 1998."),
    Document(page_content="She continued releasing music well into the 2000s.")
]
# Get the embeddings for the documents
vector_store = FAISS.from_documents(docs, embedding_model)

# Now, you can use the embeddings with FAISS or other retrieval systems
# For example, with FAISS:

# Assuming 'docs' contains your list of documents and 'embedding_model' is the model you created
vector_store = FAISS.from_documents(docs, embedding_model)
vector_store.save_local("faiss_index")


# -----------------------------
# Step 4: Create Retriever Tool
# -----------------------------
retriever = vector_store.as_retriever()

question_retriever_tool = create_retriever_tool(
    retriever=retriever,
    name="Question_Search",
    description="A tool to retrieve documents related to a user's question."
)



def retriever(state: MessagesState):
    """Retriever node using similarity scores for filtering"""
    query = state["messages"][0].content
    results = vector_store.similarity_search_with_score(query, k=4)  # top 4 matches

    # Filter by score (lower is more similar; adjust threshold as needed)
    threshold = 0.8
    filtered = [doc for doc, score in results if score < threshold]

    if not filtered:
        example_msg = HumanMessage(content="No relevant documents found.")
    else:
        content = "\n\n".join(doc.page_content for doc in filtered)
        example_msg = HumanMessage(
            content=f"Here are relevant reference documents:\n\n{content}"
        )

    return {"messages": [sys_msg] + state["messages"] + [example_msg]}



tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    web_search,
    arvix_search,
]


def get_llm(provider: str, config: dict):
    if provider == "google":
        return ChatGoogleGenerativeAI(model=config["model"], temperature=config["temperature"])
    elif provider == "groq":
        return ChatGroq(model=config["model"], temperature=config["temperature"])
    elif provider == "huggingface":
        return ChatHuggingFace(
            llm=HuggingFaceEndpoint(url=config["url"], temperature=config["temperature"])
        )
    else:
        raise ValueError(f"Invalid provider: {provider}")


# Build graph function
def build_graph():
    """Build the graph based on provider"""
    llm = get_llm(provider, model_config)
    llm_with_tools = llm.bind_tools(tools)

    # Node
    def assistant(state: MessagesState):
        """Assistant node"""
        return {"messages": [llm_with_tools.invoke(state["messages"])]}
    
    def retriever(state: MessagesState):
        user_query = state["messages"][0].content
        similar_docs = vector_store.similarity_search(user_query)
    
        if not similar_docs:
            print("No similar docs found in FAISS. Using wiki_search.")
            wiki_result = wiki_search.invoke(user_query)
            return {
                "messages": [
                    sys_msg,
                    state["messages"][0],
                    HumanMessage(content=f"Using Wikipedia search:\n\n{wiki_result['wiki_results']}")
                ]
            }
        else:
            return {
                "messages": [
                    sys_msg,
                    state["messages"][0],
                    HumanMessage(content=f"Reference question:\n\n{similar_docs[0].page_content}")
                ]
            }


    
    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "retriever")
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges(
        "assistant",
        tools_condition,
    )
    builder.add_edge("tools", "assistant")

    # Compile graph
    return builder.compile()