Spaces:
Sleeping
Sleeping
File size: 7,556 Bytes
04fa07a 2d71661 d4e30d8 04fa07a 8c9a116 04fa07a 2530e3b 04fa07a 2d71661 04fa07a bb48649 2530e3b bb48649 2530e3b bb48649 04fa07a b7608ef 7681b94 b7608ef 7681b94 2530e3b b7608ef 04fa07a 7681b94 2530e3b 7681b94 2530e3b 7681b94 2530e3b 7681b94 2530e3b 7681b94 daf8395 74c1cfd 2530e3b daf8395 2530e3b daf8395 2530e3b daf8395 7681b94 2530e3b bb48649 7681b94 bb48649 2530e3b 04fa07a 2530e3b daf8395 04fa07a daf8395 2530e3b bb48649 2530e3b 2d71661 2530e3b d8e87f2 7681b94 2530e3b daf8395 2530e3b 74c1cfd d8e87f2 daf8395 d8e87f2 2d71661 04fa07a 2530e3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import os
import requests
import pandas as pd
import numpy as np
import joblib
import gradio as gr
from datetime import datetime, timedelta
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image as keras_image
from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preprocess
from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess
from tensorflow.keras.losses import BinaryFocalCrossentropy
from PIL import Image
# --- CONFIGURATION ---
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
API_URL = (
"https://archive-api.open-meteo.com/v1/archive"
"?latitude={lat}&longitude={lon}"
"&start_date={start}&end_date={end}"
"&daily=temperature_2m_max,temperature_2m_min,"
"precipitation_sum,windspeed_10m_max,"
"relative_humidity_2m_max,relative_humidity_2m_min"
"&timezone=UTC"
)
# --- LOAD MODELS ---
def load_models():
try:
vgg_model = load_model(
'vgg16_focal_unfreeze_more.keras',
custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
)
def focal_loss_fixed(gamma=2., alpha=.25):
import tensorflow.keras.backend as K
def loss_fn(y_true, y_pred):
eps = K.epsilon(); y_pred = K.clip(y_pred, eps, 1.-eps)
ce = -y_true * K.log(y_pred)
w = alpha * K.pow(1-y_pred, gamma)
return K.mean(w * ce, axis=-1)
return loss_fn
xce_model = load_model(
'severity_post_tta.keras',
custom_objects={'focal_loss_fixed': focal_loss_fixed()}
)
rf_model = joblib.load('ensemble_rf_model.pkl')
xgb_model = joblib.load('ensemble_xgb_model.pkl')
lr_model = joblib.load('wildfire_logistic_model_synthetic.joblib')
return vgg_model, xce_model, rf_model, xgb_model, lr_model
except Exception as e:
print(f"Error loading models: {e}")
return None, None, None, None, None
# --- RULES & TEMPLATES ---
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
task_rules = {
'mild': {'decrease':'mild','same':'mild','increase':'moderate'},
'moderate':{'decrease':'mild','same':'moderate','increase':'severe'},
'severe': {'decrease':'moderate','same':'severe','increase':'severe'}
}
recommendations = {
'mild': {...},
'moderate': {...},
'severe': {...}
}
# --- PIPELINE FUNCTIONS ---
def detect_fire(img):
try:
if vgg_model is None:
return True, 0.85
x = keras_image.img_to_array(img.resize((128,128)))[None]
x = vgg_preprocess(x)
prob = float(vgg_model.predict(x)[0][0])
return prob >= 0.5, prob
except:
return False, 0.0
def classify_severity(img):
try:
if xception_model is None:
return 'moderate'
x = keras_image.img_to_array(img.resize((224,224)))[None]
x = xce_preprocess(x)
preds = xception_model.predict(x)
rf_p = rf_model.predict(preds)[0]
xgb_p = xgb_model.predict(preds)[0]
ensemble = int(round((rf_p + xgb_p)/2))
return target_map.get(ensemble,'moderate')
except:
return 'moderate'
def fetch_weather_trend(lat, lon):
try:
end = datetime.utcnow()
start = end - timedelta(days=1)
url = API_URL.format(lat=lat, lon=lon,
start=start.strftime('%Y-%m-%d'),
end=end.strftime('%Y-%m-%d'))
resp = requests.get(url, timeout=5)
if resp.status_code==200:
df = pd.DataFrame(resp.json().get('daily', {}))
else:
raise Exception()
except:
df = pd.DataFrame({ 'date': ['2025-04-25','2025-04-26'], 'precipitation_sum':[5,2], 'temperature_2m_max':[28,30], 'temperature_2m_min':[18,20], 'relative_humidity_2m_max':[70,65], 'relative_humidity_2m_min':[40,35], 'windspeed_10m_max':[15,18] })
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
df['wind_speed'] = df['windspeed_10m_max']
df['precipitation'] = df['precipitation_sum']
df['fire_risk_score'] = (0.4*(df['temperature']/55) + 0.2*(1-df['humidity']/100) + 0.3*(df['wind_speed']/60) + 0.1*(1-df['precipitation']/50))
feat = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']].iloc[-1].values.reshape(1,-1)
if lr_model is not None:
cl = lr_model.predict(feat)[0]
return trend_map.get(cl,'same')
return 'same'
def generate_recommendations(orig, trend):
proj = task_rules[orig][trend]
rec = recommendations[proj]
return f"**Original Severity:** {orig.title()} \n**Weather Trend:** {trend.title()} \n**Projected Severity:** {proj.title()}\n\n### Management Recommendations:\n**Immediate:** {rec['immediate']}\n\n**Evacuation:** {rec['evacuation']}\n\n**Containment:** {rec['containment']}\n\n**Prevention:** {rec['prevention']}\n\n**Education:** {rec['education']}"
# --- MAIN PIPELINE ---
def pipeline(image):
if image is None:
return "No image provided","N/A","N/A","**Upload image**"
img = Image.fromarray(image).convert('RGB')
fire, prob = detect_fire(img)
if not fire:
return f"No wildfire detected ({(1-prob)*100:.1f}% sure)","N/A","N/A","**No wildfire.**"
sev = classify_severity(img)
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
recs = generate_recommendations(sev, trend)
return f"Wildfire detected ({prob*100:.1f}%)", sev.title(), trend.title(), recs
# --- LOAD MODELS ---
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
# --- UI STYLING & LAYOUT ---
custom_css = """
.sidebar { background: #2e3440; color: #eceff4; padding: 1rem; border-radius: 1rem; }
#main-title { font-size: 2.5rem; color: #3b4252; }
#sub-title { font-size: 1.125rem; color: #4c566a; }
.card { background: #eceff4; color: #2e3440; border-radius: 0.75rem; padding: 1rem; margin-bottom: 1rem; box-shadow: 0 2px 8px rgba(0,0,0,0.1); }
.gr-button { background: #5e81ac !important; color: white !important; border-radius: 0.5rem; }
.status-badge { padding: 0.25em 0.75em; border-radius: 9999px; font-weight: 600; }
.status-fire { background: #bf616a; color: white; }
.status-no-fire { background: #a3be8c; color: white; }
.gr-markdown { color: #2e3440; }
"""
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("# 🔥 Wildfire Command Center", elem_id="main-title")
gr.Markdown(
"Upload a **forest image** to detect wildfire, classify severity, fetch weather trend, and get recommendations.",
elem_id="sub-title"
)
image_input = gr.Image(type="numpy", label="Upload Forest Image")
run_btn = gr.Button("Analyze Now", variant="primary")
with gr.Column(scale=1, elem_classes="sidebar"):
gr.Markdown("## 📊 Last Analysis")
last_status = gr.Markdown("*No analysis yet*")
last_severity = gr.Markdown("---")
last_trend = gr.Markdown("---")
last_recs = gr.Markdown("---")
run_btn.click(
fn=pipeline,
inputs=image_input,
outputs=[last_status, last_severity, last_trend, last_recs]
)
if __name__ == '__main__':
demo.queue(api_open=True).launch()
|