File size: 7,556 Bytes
04fa07a
 
 
2d71661
d4e30d8
04fa07a
 
 
 
 
 
 
8c9a116
04fa07a
 
 
 
 
 
 
2530e3b
 
04fa07a
 
2d71661
 
04fa07a
 
bb48649
 
 
 
 
 
 
 
2530e3b
bb48649
2530e3b
bb48649
 
 
 
 
 
 
 
 
 
 
 
 
04fa07a
b7608ef
7681b94
 
b7608ef
7681b94
 
 
 
 
2530e3b
 
 
b7608ef
04fa07a
 
7681b94
 
 
 
 
 
 
 
2530e3b
7681b94
 
 
 
2530e3b
7681b94
 
 
2530e3b
7681b94
 
2530e3b
 
 
7681b94
 
 
 
daf8395
 
74c1cfd
 
 
2530e3b
 
 
 
 
 
 
 
 
daf8395
2530e3b
 
daf8395
 
2530e3b
 
daf8395
7681b94
2530e3b
 
 
 
bb48649
 
7681b94
bb48649
2530e3b
04fa07a
 
 
2530e3b
daf8395
04fa07a
daf8395
2530e3b
bb48649
2530e3b
 
2d71661
2530e3b
 
 
 
 
 
 
 
 
 
 
 
d8e87f2
7681b94
2530e3b
 
daf8395
2530e3b
 
 
 
 
 
 
 
 
 
 
 
74c1cfd
d8e87f2
daf8395
d8e87f2
 
 
2d71661
04fa07a
2530e3b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import requests
import pandas as pd
import numpy as np
import joblib
import gradio as gr
from datetime import datetime, timedelta
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image as keras_image
from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preprocess
from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess
from tensorflow.keras.losses import BinaryFocalCrossentropy
from PIL import Image

# --- CONFIGURATION ---
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
API_URL = (
    "https://archive-api.open-meteo.com/v1/archive"
    "?latitude={lat}&longitude={lon}"
    "&start_date={start}&end_date={end}"
    "&daily=temperature_2m_max,temperature_2m_min,"
    "precipitation_sum,windspeed_10m_max,"
    "relative_humidity_2m_max,relative_humidity_2m_min"
    "&timezone=UTC"
)

# --- LOAD MODELS ---
def load_models():
    try:
        vgg_model = load_model(
            'vgg16_focal_unfreeze_more.keras',
            custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
        )
        def focal_loss_fixed(gamma=2., alpha=.25):
            import tensorflow.keras.backend as K
            def loss_fn(y_true, y_pred):
                eps = K.epsilon(); y_pred = K.clip(y_pred, eps, 1.-eps)
                ce = -y_true * K.log(y_pred)
                w = alpha * K.pow(1-y_pred, gamma)
                return K.mean(w * ce, axis=-1)
            return loss_fn
        xce_model = load_model(
            'severity_post_tta.keras',
            custom_objects={'focal_loss_fixed': focal_loss_fixed()}
        )
        rf_model = joblib.load('ensemble_rf_model.pkl')
        xgb_model = joblib.load('ensemble_xgb_model.pkl')
        lr_model = joblib.load('wildfire_logistic_model_synthetic.joblib')
        return vgg_model, xce_model, rf_model, xgb_model, lr_model
    except Exception as e:
        print(f"Error loading models: {e}")
        return None, None, None, None, None

# --- RULES & TEMPLATES ---
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
task_rules = {
    'mild':    {'decrease':'mild','same':'mild','increase':'moderate'},
    'moderate':{'decrease':'mild','same':'moderate','increase':'severe'},
    'severe':  {'decrease':'moderate','same':'severe','increase':'severe'}
}
recommendations = {
    'mild': {...},
    'moderate': {...},
    'severe': {...}
}

# --- PIPELINE FUNCTIONS ---
def detect_fire(img):
    try:
        if vgg_model is None:
            return True, 0.85
        x = keras_image.img_to_array(img.resize((128,128)))[None]
        x = vgg_preprocess(x)
        prob = float(vgg_model.predict(x)[0][0])
        return prob >= 0.5, prob
    except:
        return False, 0.0

def classify_severity(img):
    try:
        if xception_model is None:
            return 'moderate'
        x = keras_image.img_to_array(img.resize((224,224)))[None]
        x = xce_preprocess(x)
        preds = xception_model.predict(x)
        rf_p = rf_model.predict(preds)[0]
        xgb_p = xgb_model.predict(preds)[0]
        ensemble = int(round((rf_p + xgb_p)/2))
        return target_map.get(ensemble,'moderate')
    except:
        return 'moderate'

def fetch_weather_trend(lat, lon):
    try:
        end = datetime.utcnow()
        start = end - timedelta(days=1)
        url = API_URL.format(lat=lat, lon=lon,
                             start=start.strftime('%Y-%m-%d'),
                             end=end.strftime('%Y-%m-%d'))
        resp = requests.get(url, timeout=5)
        if resp.status_code==200:
            df = pd.DataFrame(resp.json().get('daily', {}))
        else:
            raise Exception()
    except:
        df = pd.DataFrame({ 'date': ['2025-04-25','2025-04-26'], 'precipitation_sum':[5,2], 'temperature_2m_max':[28,30], 'temperature_2m_min':[18,20], 'relative_humidity_2m_max':[70,65], 'relative_humidity_2m_min':[40,35], 'windspeed_10m_max':[15,18] })
    df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
    df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
    df['wind_speed'] = df['windspeed_10m_max']
    df['precipitation'] = df['precipitation_sum']
    df['fire_risk_score'] = (0.4*(df['temperature']/55) + 0.2*(1-df['humidity']/100) + 0.3*(df['wind_speed']/60) + 0.1*(1-df['precipitation']/50))
    feat = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']].iloc[-1].values.reshape(1,-1)
    if lr_model is not None:
        cl = lr_model.predict(feat)[0]
        return trend_map.get(cl,'same')
    return 'same'

def generate_recommendations(orig, trend):
    proj = task_rules[orig][trend]
    rec = recommendations[proj]
    return f"**Original Severity:** {orig.title()}  \n**Weather Trend:** {trend.title()}  \n**Projected Severity:** {proj.title()}\n\n### Management Recommendations:\n**Immediate:** {rec['immediate']}\n\n**Evacuation:** {rec['evacuation']}\n\n**Containment:** {rec['containment']}\n\n**Prevention:** {rec['prevention']}\n\n**Education:** {rec['education']}"

# --- MAIN PIPELINE ---
def pipeline(image):
    if image is None:
        return "No image provided","N/A","N/A","**Upload image**"
    img = Image.fromarray(image).convert('RGB')
    fire, prob = detect_fire(img)
    if not fire:
        return f"No wildfire detected ({(1-prob)*100:.1f}% sure)","N/A","N/A","**No wildfire.**"
    sev = classify_severity(img)
    trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
    recs = generate_recommendations(sev, trend)
    return f"Wildfire detected ({prob*100:.1f}%)", sev.title(), trend.title(), recs

# --- LOAD MODELS ---
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()

# --- UI STYLING & LAYOUT ---
custom_css = """
.sidebar { background: #2e3440; color: #eceff4; padding: 1rem; border-radius: 1rem; }
#main-title { font-size: 2.5rem; color: #3b4252; }
#sub-title { font-size: 1.125rem; color: #4c566a; }
.card { background: #eceff4; color: #2e3440; border-radius: 0.75rem; padding: 1rem; margin-bottom: 1rem; box-shadow: 0 2px 8px rgba(0,0,0,0.1); }
.gr-button { background: #5e81ac !important; color: white !important; border-radius: 0.5rem; }
.status-badge { padding: 0.25em 0.75em; border-radius: 9999px; font-weight: 600; }
.status-fire { background: #bf616a; color: white; }
.status-no-fire { background: #a3be8c; color: white; }
.gr-markdown { color: #2e3440; }
"""

with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
    with gr.Row():
        with gr.Column(scale=2):
            gr.Markdown("# 🔥 Wildfire Command Center", elem_id="main-title")
            gr.Markdown(
                "Upload a **forest image** to detect wildfire, classify severity, fetch weather trend, and get recommendations.",
                elem_id="sub-title"
            )
            image_input = gr.Image(type="numpy", label="Upload Forest Image")
            run_btn = gr.Button("Analyze Now", variant="primary")
        with gr.Column(scale=1, elem_classes="sidebar"):
            gr.Markdown("## 📊 Last Analysis")
            last_status = gr.Markdown("*No analysis yet*")
            last_severity = gr.Markdown("---")
            last_trend = gr.Markdown("---")
            last_recs = gr.Markdown("---")

    run_btn.click(
        fn=pipeline,
        inputs=image_input,
        outputs=[last_status, last_severity, last_trend, last_recs]
    )

if __name__ == '__main__':
    demo.queue(api_open=True).launch()