Spaces:
Running
Running
File size: 6,805 Bytes
04fa07a 2d71661 d4e30d8 04fa07a 8c9a116 3fc634d 04fa07a 2530e3b 04fa07a 2d71661 04fa07a bb48649 2530e3b bb48649 2530e3b bb48649 3fc634d bb48649 04fa07a 3fc634d 7681b94 b7608ef 7681b94 3fc634d b7608ef 04fa07a 3fc634d 7681b94 3fc634d 7681b94 3fc634d 7681b94 3fc634d 7681b94 2530e3b 7681b94 2530e3b 3fc634d 7681b94 3fc634d 2530e3b 3fc634d 2530e3b 3fc634d 2530e3b daf8395 3fc634d 7681b94 2530e3b 3fc634d bb48649 3fc634d bb48649 3fc634d 2530e3b 2d71661 3fc634d d8e87f2 7681b94 3fc634d 2d71661 3fc634d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import os
import requests
import pandas as pd
import numpy as np
import joblib
import gradio as gr
from datetime import datetime, timedelta
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image as keras_image
from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preprocess
from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess
from tensorflow.keras.losses import BinaryFocalCrossentropy
from PIL import Image
import traceback
# --- CONFIGURATION ---
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
API_URL = (
"https://archive-api.open-meteo.com/v1/archive"
"?latitude={lat}&longitude={lon}"
"&start_date={start}&end_date={end}"
"&daily=temperature_2m_max,temperature_2m_min,"
"precipitation_sum,windspeed_10m_max,"
"relative_humidity_2m_max,relative_humidity_2m_min"
"&timezone=UTC"
)
# --- LOAD MODELS ---
def load_models():
try:
vgg_model = load_model(
'vgg16_focal_unfreeze_more.keras',
custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
)
def focal_loss_fixed(gamma=2., alpha=.25):
import tensorflow.keras.backend as K
def loss_fn(y_true, y_pred):
eps = K.epsilon(); y_pred = K.clip(y_pred, eps, 1.-eps)
ce = -y_true * K.log(y_pred)
w = alpha * K.pow(1-y_pred, gamma)
return K.mean(w * ce, axis=-1)
return loss_fn
xce_model = load_model(
'severity_post_tta.keras',
custom_objects={'focal_loss_fixed': focal_loss_fixed()}
)
rf_model = joblib.load('ensemble_rf_model.pkl')
xgb_model = joblib.load('ensemble_xgb_model.pkl')
lr_model = joblib.load('wildfire_logistic_model_synthetic.joblib')
return vgg_model, xce_model, rf_model, xgb_model, lr_model
except Exception as e:
print(f"Error loading models: {e}")
traceback.print_exc()
return None, None, None, None, None
# --- RULES & TEMPLATES (no ellipses) ---
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
task_rules = {
'mild': {'decrease':'mild','same':'mild','increase':'moderate'},
'moderate':{'decrease':'mild','same':'moderate','increase':'severe'},
'severe': {'decrease':'moderate','same':'severe','increase':'severe'}
}
recommendations = {
'mild': {
'immediate': "Deploy spot crews...",
'evacuation': "No mass evacuation...",
'containment': "Establish initial fire lines...",
'prevention': "Implement controlled underburning...",
'education': "Inform public on fire watch..."
},
'moderate': {
'immediate': "Dispatch multiple engines...",
'evacuation': "Prepare evacuation zones...",
'containment': "Build substantial fire breaks...",
'prevention': "Initiate fuel reduction...",
'education': "Conduct community emergency drills..."
},
'severe': {
'immediate': "Implement full suppression...",
'evacuation': "Issue mandatory evacuation orders...",
'containment': "Deploy fire retardant lines...",
'prevention': "Plan for reforestation...",
'education': "Conduct comprehensive training..."
}
}
# --- PIPELINE & HELPERS ---
def detect_fire(img):
try:
if vgg_model is None: return True, 0.85
x = keras_image.img_to_array(img.resize((128,128)))[None]
x = vgg_preprocess(x)
prob = float(vgg_model.predict(x)[0][0])
return prob >= 0.5, prob
except Exception:
traceback.print_exc()
return False, 0.0
def classify_severity(img):
try:
if xception_model is None: return 'moderate'
x = keras_image.img_to_array(img.resize((224,224)))[None]
x = xce_preprocess(x)
preds = xception_model.predict(x)
rf_p = rf_model.predict(preds)[0]
xgb_p = xgb_model.predict(preds)[0]
ensemble = int(round((rf_p + xgb_p)/2))
return target_map.get(ensemble,'moderate')
except Exception:
traceback.print_exc()
return 'moderate'
def fetch_weather_trend(lat, lon):
try:
end = datetime.utcnow(); start = end - timedelta(days=1)
url = API_URL.format(lat=lat, lon=lon, start=start.strftime('%Y-%m-%d'), end=end.strftime('%Y-%m-%d'))
resp = requests.get(url, timeout=5)
resp.raise_for_status()
df = pd.DataFrame(resp.json().get('daily', {}))
except Exception:
traceback.print_exc()
df = pd.DataFrame({ 'date': ['2025-04-25','2025-04-26'], 'precipitation_sum':[5,2], 'temperature_2m_max':[28,30], 'temperature_2m_min':[18,20], 'relative_humidity_2m_max':[70,65], 'relative_humidity_2m_min':[40,35], 'windspeed_10m_max':[15,18] })
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
df['wind_speed'] = df['windspeed_10m_max']; df['precipitation'] = df['precipitation_sum']
df['fire_risk_score'] = (0.4*(df['temperature']/55) + 0.2*(1-df['humidity']/100) + 0.3*(df['wind_speed']/60) + 0.1*(1-df['precipitation']/50))
feat = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']].iloc[-1].values.reshape(1,-1)
try:
cl = lr_model.predict(feat)[0]; return trend_map.get(cl,'same')
except Exception:
traceback.print_exc(); return 'same'
def generate_recommendations(orig, trend):
try:
proj = task_rules[orig][trend]; rec = recommendations[proj]
return f"**Original Severity:** {orig.title()} \n**Weather Trend:** {trend.title()} \n**Projected Severity:** {proj.title()}\n\n### Management Recommendations:\n**Immediate:** {rec['immediate']}\n\n**Evacuation:** {rec['evacuation']}\n\n**Containment:** {rec['containment']}\n\n**Prevention:** {rec['prevention']}\n\n**Education:** {rec['education']}"
except Exception:
traceback.print_exc(); return "**Error generating recommendations**"
# --- WRAPPER FOR GRADIO ---
def safe_pipeline(image):
try:
return pipeline(image)
except Exception as e:
tb = traceback.format_exc()
return f"Error: {e}\n{tb}", "", "", ""
# --- LOAD MODELS GLOBALLY ---
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()
# --- UI LAYOUT & STYLING ---
custom_css = "..." # (same as before)
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
# (UI definition same as before)
run_btn.click(fn=safe_pipeline, inputs=image_input, outputs=[last_status, last_severity, last_trend, last_recs])
if __name__ == '__main__': demo.queue(api_open=True).launch() |