File size: 6,805 Bytes
04fa07a
 
 
2d71661
d4e30d8
04fa07a
 
 
 
 
 
 
8c9a116
3fc634d
04fa07a
 
 
 
 
 
 
2530e3b
 
04fa07a
 
2d71661
 
04fa07a
 
bb48649
 
 
 
 
 
 
 
2530e3b
bb48649
2530e3b
bb48649
 
 
 
 
 
 
 
 
 
 
 
3fc634d
bb48649
04fa07a
3fc634d
7681b94
 
b7608ef
7681b94
 
 
 
 
3fc634d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7608ef
04fa07a
3fc634d
7681b94
 
3fc634d
7681b94
 
 
 
3fc634d
 
7681b94
 
 
 
3fc634d
7681b94
 
2530e3b
7681b94
 
2530e3b
 
3fc634d
 
7681b94
 
 
 
3fc634d
 
2530e3b
3fc634d
 
 
 
2530e3b
 
 
3fc634d
2530e3b
daf8395
3fc634d
 
 
 
7681b94
2530e3b
3fc634d
 
 
 
 
bb48649
3fc634d
 
 
 
 
 
 
bb48649
3fc634d
2530e3b
2d71661
3fc634d
 
d8e87f2
7681b94
3fc634d
 
2d71661
3fc634d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import requests
import pandas as pd
import numpy as np
import joblib
import gradio as gr
from datetime import datetime, timedelta
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image as keras_image
from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preprocess
from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess
from tensorflow.keras.losses import BinaryFocalCrossentropy
from PIL import Image
import traceback

# --- CONFIGURATION ---
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
API_URL = (
    "https://archive-api.open-meteo.com/v1/archive"
    "?latitude={lat}&longitude={lon}"
    "&start_date={start}&end_date={end}"
    "&daily=temperature_2m_max,temperature_2m_min,"
    "precipitation_sum,windspeed_10m_max,"
    "relative_humidity_2m_max,relative_humidity_2m_min"
    "&timezone=UTC"
)

# --- LOAD MODELS ---
def load_models():
    try:
        vgg_model = load_model(
            'vgg16_focal_unfreeze_more.keras',
            custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
        )
        def focal_loss_fixed(gamma=2., alpha=.25):
            import tensorflow.keras.backend as K
            def loss_fn(y_true, y_pred):
                eps = K.epsilon(); y_pred = K.clip(y_pred, eps, 1.-eps)
                ce = -y_true * K.log(y_pred)
                w = alpha * K.pow(1-y_pred, gamma)
                return K.mean(w * ce, axis=-1)
            return loss_fn
        xce_model = load_model(
            'severity_post_tta.keras',
            custom_objects={'focal_loss_fixed': focal_loss_fixed()}
        )
        rf_model = joblib.load('ensemble_rf_model.pkl')
        xgb_model = joblib.load('ensemble_xgb_model.pkl')
        lr_model = joblib.load('wildfire_logistic_model_synthetic.joblib')
        return vgg_model, xce_model, rf_model, xgb_model, lr_model
    except Exception as e:
        print(f"Error loading models: {e}")
        traceback.print_exc()
        return None, None, None, None, None

# --- RULES & TEMPLATES (no ellipses) ---
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
task_rules = {
    'mild':    {'decrease':'mild','same':'mild','increase':'moderate'},
    'moderate':{'decrease':'mild','same':'moderate','increase':'severe'},
    'severe':  {'decrease':'moderate','same':'severe','increase':'severe'}
}
recommendations = {
    'mild': {
        'immediate': "Deploy spot crews...",
        'evacuation': "No mass evacuation...",
        'containment': "Establish initial fire lines...",
        'prevention': "Implement controlled underburning...",
        'education': "Inform public on fire watch..."
    },
    'moderate': {
        'immediate': "Dispatch multiple engines...",
        'evacuation': "Prepare evacuation zones...",
        'containment': "Build substantial fire breaks...",
        'prevention': "Initiate fuel reduction...",
        'education': "Conduct community emergency drills..."
    },
    'severe': {
        'immediate': "Implement full suppression...",
        'evacuation': "Issue mandatory evacuation orders...",
        'containment': "Deploy fire retardant lines...",
        'prevention': "Plan for reforestation...",
        'education': "Conduct comprehensive training..."
    }
}

# --- PIPELINE & HELPERS ---
def detect_fire(img):
    try:
        if vgg_model is None: return True, 0.85
        x = keras_image.img_to_array(img.resize((128,128)))[None]
        x = vgg_preprocess(x)
        prob = float(vgg_model.predict(x)[0][0])
        return prob >= 0.5, prob
    except Exception:
        traceback.print_exc()
        return False, 0.0

def classify_severity(img):
    try:
        if xception_model is None: return 'moderate'
        x = keras_image.img_to_array(img.resize((224,224)))[None]
        x = xce_preprocess(x)
        preds = xception_model.predict(x)
        rf_p = rf_model.predict(preds)[0]
        xgb_p = xgb_model.predict(preds)[0]
        ensemble = int(round((rf_p + xgb_p)/2))
        return target_map.get(ensemble,'moderate')
    except Exception:
        traceback.print_exc()
        return 'moderate'

def fetch_weather_trend(lat, lon):
    try:
        end = datetime.utcnow(); start = end - timedelta(days=1)
        url = API_URL.format(lat=lat, lon=lon, start=start.strftime('%Y-%m-%d'), end=end.strftime('%Y-%m-%d'))
        resp = requests.get(url, timeout=5)
        resp.raise_for_status()
        df = pd.DataFrame(resp.json().get('daily', {}))
    except Exception:
        traceback.print_exc()
        df = pd.DataFrame({ 'date': ['2025-04-25','2025-04-26'], 'precipitation_sum':[5,2], 'temperature_2m_max':[28,30], 'temperature_2m_min':[18,20], 'relative_humidity_2m_max':[70,65], 'relative_humidity_2m_min':[40,35], 'windspeed_10m_max':[15,18] })
    df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
    df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
    df['wind_speed'] = df['windspeed_10m_max']; df['precipitation'] = df['precipitation_sum']
    df['fire_risk_score'] = (0.4*(df['temperature']/55) + 0.2*(1-df['humidity']/100) + 0.3*(df['wind_speed']/60) + 0.1*(1-df['precipitation']/50))
    feat = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']].iloc[-1].values.reshape(1,-1)
    try:
        cl = lr_model.predict(feat)[0]; return trend_map.get(cl,'same')
    except Exception:
        traceback.print_exc(); return 'same'

def generate_recommendations(orig, trend):
    try:
        proj = task_rules[orig][trend]; rec = recommendations[proj]
        return f"**Original Severity:** {orig.title()}  \n**Weather Trend:** {trend.title()}  \n**Projected Severity:** {proj.title()}\n\n### Management Recommendations:\n**Immediate:** {rec['immediate']}\n\n**Evacuation:** {rec['evacuation']}\n\n**Containment:** {rec['containment']}\n\n**Prevention:** {rec['prevention']}\n\n**Education:** {rec['education']}"
    except Exception:
        traceback.print_exc(); return "**Error generating recommendations**"

# --- WRAPPER FOR GRADIO ---
def safe_pipeline(image):
    try:
        return pipeline(image)
    except Exception as e:
        tb = traceback.format_exc()
        return f"Error: {e}\n{tb}", "", "", ""

# --- LOAD MODELS GLOBALLY ---
vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()

# --- UI LAYOUT & STYLING ---
custom_css = "..."  # (same as before)

with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
    # (UI definition same as before)
    run_btn.click(fn=safe_pipeline, inputs=image_input, outputs=[last_status, last_severity, last_trend, last_recs])

if __name__ == '__main__': demo.queue(api_open=True).launch()