File size: 6,800 Bytes
04fa07a
 
 
2d71661
d4e30d8
04fa07a
 
 
 
 
 
 
8c9a116
04fa07a
 
 
 
 
 
 
c347529
 
04fa07a
 
2d71661
 
04fa07a
 
fe9a939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04fa07a
fe9a939
c347529
fe9a939
7681b94
fe9a939
b7608ef
fe9a939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7681b94
04fa07a
ec1da24
7681b94
fe9a939
 
 
 
 
7681b94
 
fe9a939
 
 
 
 
 
 
7681b94
c1a8779
7681b94
fe9a939
 
 
 
 
 
 
 
 
 
 
 
c1a8779
ec1da24
fe9a939
 
 
 
ec1da24
fe9a939
 
 
 
7681b94
c1a8779
ec1da24
fe9a939
 
 
 
 
 
 
 
 
 
ec1da24
 
 
 
fe9a939
 
ec1da24
fe9a939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1a8779
ec1da24
f0aec78
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import requests
import pandas as pd
import numpy as np
import joblib
import gradio as gr
from datetime import datetime, timedelta
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image as keras_image
from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preprocess
from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess
from tensorflow.keras.losses import BinaryFocalCrossentropy
from PIL import Image

# --- CONFIGURATION ---
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
API_URL = (
    "https://archive-api.open-meteo.com/v1/archive"
    "?latitude={lat}&longitude={lon}"
    "&start_date={start}&end_date={end}"
    "&daily=temperature_2m_max,temperature_2m_min,"
    "precipitation_sum,windspeed_10m_max,"
    "relative_humidity_2m_max,relative_humidity_2m_min"
    "&timezone=UTC"
)

# --- LOAD MODELS ---
def load_models():
    # Fire detector (VGG16)
    vgg_model = load_model(
        'vgg16_focal_unfreeze_more.keras',
        custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
    )
    # Severity classifier (Xception)
    def focal_loss_fixed(gamma=2., alpha=.25):
        import tensorflow.keras.backend as K
        def loss_fn(y_true, y_pred):
            eps = K.epsilon(); y_pred = K.clip(y_pred, eps, 1.-eps)
            ce = -y_true * K.log(y_pred)
            w = alpha * K.pow(1-y_pred, gamma)
            return K.mean(w * ce, axis=-1)
        return loss_fn
    xce_model = load_model(
        'severity_post_tta.keras',
        custom_objects={'focal_loss_fixed': focal_loss_fixed()}
    )
    # Ensemble and trend models
    rf_model = joblib.load('ensemble_rf_model.pkl')
    xgb_model = joblib.load('ensemble_xgb_model.pkl')
    lr_model = joblib.load('wildfire_logistic_model_synthetic.joblib')
    return vgg_model, xce_model, rf_model, xgb_model, lr_model

vgg_model, xception_model, rf_model, xgb_model, lr_model = load_models()

# --- RULES & TEMPLATES ---
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
task_rules = {
    'mild':    {'decrease':'mild','same':'mild','increase':'moderate'},
    'moderate':{'decrease':'mild','same':'moderate','increase':'severe'},
    'severe':  {'decrease':'moderate','same':'severe','increase':'severe'}
}
templates = {
    'mild': (
        "**1. Immediate actions:** Monitor fire; deploy spot crews.\n"
        "**2. Evacuation:** No mass evacuation; notify nearby communities.\n"
        "**3. Short-term containment:** Establish fire lines.\n"
        "**4. Long-term prevention:** Controlled underburning; vegetation management.\n"
        "**5. Education:** Inform public on firewatch and reporting."
    ),
    'moderate': (
        "**1. Immediate actions:** Dispatch engines and aerial support.\n"
        "**2. Evacuation:** Prepare evacuation zones; advise voluntary evacuation.\n"
        "**3. Short-term containment:** Build fire breaks; water drops.\n"
        "**4. Long-term prevention:** Fuel reduction programs.\n"
        "**5. Education:** Community drills and awareness campaigns."
    ),
    'severe': (
        "**1. Immediate actions:** Full suppression with air tankers.\n"
        "**2. Evacuation:** Mandatory evacuation; open shelters.\n"
        "**3. Short-term containment:** Fire retardant lines; backfires.\n"
        "**4. Long-term prevention:** Reforestation; infrastructure hardening.\n"
        "**5. Education:** Emergency response training; risk communication."
    )
}

# --- PIPELINE FUNCTIONS ---
def detect_fire(img):
    x = keras_image.img_to_array(img.resize((128,128)))[None]
    x = vgg_preprocess(x)
    prob = float(vgg_model.predict(x)[0][0])
    return prob >= 0.5, prob


def classify_severity(img):
    x = keras_image.img_to_array(img.resize((224,224)))[None]
    x = xce_preprocess(x)
    preds = xception_model.predict(x)
    rf_p = rf_model.predict(preds)[0]
    xgb_p = xgb_model.predict(preds)[0]
    ensemble = int(round((rf_p + xgb_p)/2))
    return target_map.get(ensemble, 'moderate')


def fetch_weather_trend(lat, lon):
    end = datetime.utcnow()
    start = end - timedelta(days=1)
    url = API_URL.format(lat=lat, lon=lon,
                         start=start.strftime('%Y-%m-%d'),
                         end=end.strftime('%Y-%m-%d'))
    df = pd.DataFrame(requests.get(url).json().get('daily', {}))
    for c in ['precipitation_sum','temperature_2m_max','temperature_2m_min',
              'relative_humidity_2m_max','relative_humidity_2m_min','windspeed_10m_max']:
        df[c] = pd.to_numeric(df.get(c,[]), errors='coerce')
    df['precipitation'] = df['precipitation_sum'].fillna(0)
    df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min'])/2
    df['humidity']    = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min'])/2
    df['wind_speed']  = df['windspeed_10m_max']
    df['fire_risk_score'] = (
        0.4*(df['temperature']/55) +
        0.2*(1-df['humidity']/100) +
        0.3*(df['wind_speed']/60) +
        0.1*(1-df['precipitation']/50)
    )
    feats = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']]
    feat = feats.fillna(feats.mean()).iloc[-1].values.reshape(1,-1)
    trend_cl = lr_model.predict(feat)[0]
    return trend_map.get(trend_cl, 'same')


def generate_recommendations(original_severity, weather_trend):
    # determine projected severity
    proj = task_rules[original_severity][weather_trend]
    rec = templates[proj]
    # proper multi-line header
    header = f"""**Original:** {original_severity.title()}  
**Trend:** {weather_trend.title()}  
**Projected:** {proj.title()}\n\n"""
    return header + rec

# --- GRADIO INTERFACE ---
def pipeline(image):
    img = Image.fromarray(image).convert('RGB')
    fire, prob = detect_fire(img)
    if not fire:
        return f"No wildfire detected (prob={prob:.2f})", "N/A", "N/A", "**No wildfire detected. Stay alert.**"
    sev = classify_severity(img)
    trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
    recs = generate_recommendations(sev, trend)
    return f"Fire Detected (prob={prob:.2f})", sev.title(), trend, recs

interface = gr.Interface(
    fn=pipeline,
    inputs=gr.Image(type='numpy', label='Upload Wildfire Image'),
    outputs=[
        gr.Textbox(label='Fire Status'),
        gr.Textbox(label='Severity Level'),
        gr.Textbox(label='Weather Trend'),
        gr.Markdown(label='Recommendations')
    ],
    title='Wildfire Detection & Management Assistant',
    description='Upload an image from a forest region in Pakistan to determine wildfire presence, severity, weather-driven trend, projection, and get expert recommendations.'
)

if __name__ == '__main__':
    interface.launch()