Spaces:
Sleeping
Sleeping
File size: 9,194 Bytes
a3e0475 ffbccbb 1fd6803 b256ef1 fc5f1c7 d6f5773 b256ef1 fc5f1c7 a3e0475 5c095c6 fc42bd4 b256ef1 5c095c6 b256ef1 a40b229 b256ef1 ba9c3bd e3d3d36 5c095c6 1fd6803 5c095c6 1fd6803 391ca85 b256ef1 e3d3d36 94ac9e7 5c095c6 fc5f1c7 5c095c6 a3e0475 b256ef1 5c095c6 a3e0475 94ac9e7 b256ef1 94ac9e7 5c095c6 94ac9e7 e3d3d36 073538f fc5f1c7 5c095c6 fc5f1c7 b256ef1 e3d3d36 fc5f1c7 b256ef1 7e790cb a40b229 7e790cb a40b229 fc5f1c7 f7f1088 b256ef1 fc5f1c7 6ef9d8a 1fd6803 6ef9d8a fc5f1c7 b256ef1 7e790cb b256ef1 7e790cb fc5f1c7 e3d3d36 b256ef1 5c095c6 2a239ae 5c095c6 fc5f1c7 5c095c6 b256ef1 5c095c6 ad1c148 d4c5e46 b256ef1 1fd6803 7e790cb 2a239ae ad0b8d6 fc42bd4 b256ef1 ffbccbb ad0b8d6 2a239ae e3d3d36 7e790cb b256ef1 7e790cb 391ca85 e3d3d36 0b6b797 5c095c6 2a239ae 391ca85 5c095c6 b256ef1 5c095c6 1fd6803 f543f0b ad0b8d6 5c095c6 ad0b8d6 5c095c6 ad0b8d6 5c095c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import os
import re
import random
import subprocess
import requests
import streamlit as st
import spacy # for additional NLP processing
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
# Must be the first Streamlit command!
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π")
# --- Helper to load spaCy model with fallback ---
def load_spacy_model():
try:
return spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
return spacy.load("en_core_web_sm")
nlp_spacy = load_spacy_model()
# --- Initialize Session State Variables ---
if "chat_history" not in st.session_state:
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
if "response_ready" not in st.session_state:
st.session_state.response_ready = False
if "follow_up" not in st.session_state:
st.session_state.follow_up = ""
# --- Appearance CSS ---
st.markdown("""
<style>
.user-msg {
background-color: #696969;
color: white;
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
}
.assistant-msg {
background-color: #333333;
color: white;
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
}
.container {
display: flex;
flex-direction: column;
align-items: flex-start;
}
@media (max-width: 600px) {
.user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
}
</style>
""", unsafe_allow_html=True)
# --- Set Up Model & API Functions ---
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
sentiment_analyzer = pipeline(
"sentiment-analysis",
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
revision="714eb0f"
)
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7):
return HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token=os.getenv("HF_TOKEN"),
task="text-generation"
)
def get_nasa_apod():
url = f"https://api.nasa.gov/planetary/apod?api_key={os.getenv('NASA_API_KEY')}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
else:
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."
def analyze_sentiment(user_text):
result = sentiment_analyzer(user_text)[0]
return result['label']
def predict_action(user_text):
if "nasa" in user_text.lower() or "space" in user_text.lower():
return "nasa_info"
return "general_query"
def extract_context(text):
"""
Uses spaCy to extract named entities for additional context.
"""
doc = nlp_spacy(text)
entities = [ent.text for ent in doc.ents]
return ", ".join(entities) if entities else ""
def is_apod_query(user_text):
"""
Checks if the user's question contains keywords indicating they are asking for
the Astronomy Picture of the Day.
"""
keywords = ["apod", "image", "picture", "photo", "astronomy picture"]
return any(keyword in user_text.lower() for keyword in keywords)
def generate_follow_up(user_text):
"""
Generates two variant follow-up questions and randomly selects one.
"""
prompt_text = (
f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions "
"that invite further discussion. For example, one might be 'Would you like to know more about the six types of quarks?' "
"and another 'Would you like to explore another aspect of quantum physics?'. Do not include extra commentary. "
"Answer exclusively in English."
)
hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
output = hf.invoke(input=prompt_text).strip()
variants = re.split(r"\n|[;]+", output)
cleaned = [v.strip(' "\'') for v in variants if v.strip()]
if not cleaned:
cleaned = ["Would you like to explore this topic further?"]
return random.choice(cleaned)
def get_response(system_message, chat_history, user_text, max_new_tokens=1024):
"""
Generates HAL's detailed, in-depth answer and a follow-up question.
Incorporates sentiment analysis, additional NLP context, and style instructions.
"""
sentiment = analyze_sentiment(user_text)
action = predict_action(user_text)
# If the user's NASA-related query is specifically an APOD query, handle it specially.
if action == "nasa_info" and is_apod_query(user_text):
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
response = f"**{nasa_title}**\n\n{nasa_explanation}"
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, nasa_url
# Otherwise, treat NASA-related queries as general queries.
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
filtered_history = ""
for message in chat_history:
if message["role"] == "assistant" and message["content"].strip() == "Hello! How can I assist you today?":
continue
filtered_history += f"{message['role']}: {message['content']}\n"
# Extract style instructions if provided.
style_instruction = ""
lower_text = user_text.lower()
if "in the voice of" in lower_text or "speaking as" in lower_text:
match = re.search(r"(in the voice of|speaking as)(.*)", lower_text)
if match:
style_instruction = match.group(2).strip().capitalize()
style_instruction = f" Please respond in the voice of {style_instruction}."
context_info = extract_context(user_text)
context_clause = f" The key topics here are: {context_info}." if context_info else ""
language_clause = " Answer exclusively in English."
style_clause = style_instruction if style_instruction else ""
prompt = PromptTemplate.from_template(
(
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
"User: {user_text}.\n [/INST]\n"
"AI: Please provide a detailed, in-depth answer in a friendly, conversational tone that thoroughly covers the topic."
+ style_clause + context_clause + language_clause +
"\nHAL:"
)
)
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
raw_output = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
response = raw_output.split("HAL:")[-1].strip()
if not response:
response = "Certainly, here is an in-depth explanation: [Fallback explanation]."
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
if sentiment == "NEGATIVE" and not user_text.strip().endswith("?"):
response = "I'm sorry you're feeling this way. I'm here to help. What can I do to assist you further?"
chat_history[-1]['content'] = response
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, None
# --- Chat UI ---
st.title("π HAL - Your NASA AI Assistant")
st.markdown("π *Ask me about space, NASA, and beyond!*")
if st.sidebar.button("Reset Chat"):
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
st.session_state.response_ready = False
st.session_state.follow_up = ""
st.experimental_rerun()
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
user_input = st.chat_input("Type your message here...")
if user_input:
response, follow_up, st.session_state.chat_history, image_url = get_response(
system_message="You are a helpful AI assistant.",
user_text=user_input,
chat_history=st.session_state.chat_history
)
if image_url:
st.image(image_url, caption="NASA Image of the Day")
st.session_state.follow_up = follow_up
st.session_state.response_ready = True
|