File size: 9,194 Bytes
a3e0475
ffbccbb
1fd6803
b256ef1
fc5f1c7
d6f5773
b256ef1
fc5f1c7
a3e0475
 
5c095c6
fc42bd4
b256ef1
 
5c095c6
b256ef1
 
 
 
 
 
 
a40b229
b256ef1
ba9c3bd
e3d3d36
5c095c6
 
 
1fd6803
5c095c6
1fd6803
391ca85
b256ef1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3d3d36
94ac9e7
5c095c6
 
 
 
 
fc5f1c7
5c095c6
 
a3e0475
 
 
b256ef1
5c095c6
a3e0475
 
94ac9e7
b256ef1
94ac9e7
 
 
5c095c6
94ac9e7
e3d3d36
073538f
fc5f1c7
 
5c095c6
fc5f1c7
 
b256ef1
e3d3d36
 
fc5f1c7
b256ef1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e790cb
a40b229
7e790cb
a40b229
fc5f1c7
f7f1088
 
b256ef1
 
fc5f1c7
6ef9d8a
1fd6803
6ef9d8a
 
 
 
 
fc5f1c7
b256ef1
7e790cb
b256ef1
 
7e790cb
fc5f1c7
 
e3d3d36
b256ef1
 
5c095c6
 
2a239ae
5c095c6
fc5f1c7
 
5c095c6
b256ef1
 
5c095c6
ad1c148
 
 
 
 
d4c5e46
b256ef1
 
 
 
 
 
 
 
 
 
 
 
 
1fd6803
7e790cb
2a239ae
ad0b8d6
fc42bd4
 
b256ef1
 
ffbccbb
ad0b8d6
2a239ae
e3d3d36
7e790cb
b256ef1
 
7e790cb
 
 
 
 
 
 
 
 
 
 
 
 
 
391ca85
e3d3d36
0b6b797
5c095c6
2a239ae
391ca85
 
 
 
 
5c095c6
b256ef1
 
 
 
 
 
 
5c095c6
1fd6803
f543f0b
ad0b8d6
5c095c6
ad0b8d6
 
5c095c6
ad0b8d6
5c095c6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import re
import random
import subprocess
import requests
import streamlit as st
import spacy  # for additional NLP processing
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline

# Must be the first Streamlit command!
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")

# --- Helper to load spaCy model with fallback ---
def load_spacy_model():
    try:
        return spacy.load("en_core_web_sm")
    except OSError:
        subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
        return spacy.load("en_core_web_sm")

nlp_spacy = load_spacy_model()

# --- Initialize Session State Variables ---
if "chat_history" not in st.session_state:
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
if "response_ready" not in st.session_state:
    st.session_state.response_ready = False
if "follow_up" not in st.session_state:
    st.session_state.follow_up = ""

# --- Appearance CSS ---
st.markdown("""
    <style>
    .user-msg {
        background-color: #696969;
        color: white;
        padding: 10px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
    }
    .assistant-msg {
        background-color: #333333;
        color: white;
        padding: 10px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
    }
    .container {
        display: flex;
        flex-direction: column;
        align-items: flex-start;
    }
    @media (max-width: 600px) {
        .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
    }
    </style>
""", unsafe_allow_html=True)

# --- Set Up Model & API Functions ---
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
sentiment_analyzer = pipeline(
    "sentiment-analysis",
    model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
    revision="714eb0f"
)

def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7):
    return HuggingFaceEndpoint(
        repo_id=model_id,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        token=os.getenv("HF_TOKEN"),
        task="text-generation"
    )

def get_nasa_apod():
    url = f"https://api.nasa.gov/planetary/apod?api_key={os.getenv('NASA_API_KEY')}"
    response = requests.get(url)
    if response.status_code == 200:
        data = response.json()
        return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
    else:
        return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."

def analyze_sentiment(user_text):
    result = sentiment_analyzer(user_text)[0]
    return result['label']

def predict_action(user_text):
    if "nasa" in user_text.lower() or "space" in user_text.lower():
        return "nasa_info"
    return "general_query"

def extract_context(text):
    """
    Uses spaCy to extract named entities for additional context.
    """
    doc = nlp_spacy(text)
    entities = [ent.text for ent in doc.ents]
    return ", ".join(entities) if entities else ""

def is_apod_query(user_text):
    """
    Checks if the user's question contains keywords indicating they are asking for
    the Astronomy Picture of the Day.
    """
    keywords = ["apod", "image", "picture", "photo", "astronomy picture"]
    return any(keyword in user_text.lower() for keyword in keywords)

def generate_follow_up(user_text):
    """
    Generates two variant follow-up questions and randomly selects one.
    """
    prompt_text = (
        f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions "
        "that invite further discussion. For example, one might be 'Would you like to know more about the six types of quarks?' "
        "and another 'Would you like to explore another aspect of quantum physics?'. Do not include extra commentary. "
        "Answer exclusively in English."
    )
    hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
    output = hf.invoke(input=prompt_text).strip()
    variants = re.split(r"\n|[;]+", output)
    cleaned = [v.strip(' "\'') for v in variants if v.strip()]
    if not cleaned:
        cleaned = ["Would you like to explore this topic further?"]
    return random.choice(cleaned)

def get_response(system_message, chat_history, user_text, max_new_tokens=1024):
    """
    Generates HAL's detailed, in-depth answer and a follow-up question.
    Incorporates sentiment analysis, additional NLP context, and style instructions.
    """
    sentiment = analyze_sentiment(user_text)
    action = predict_action(user_text)
    
    # If the user's NASA-related query is specifically an APOD query, handle it specially.
    if action == "nasa_info" and is_apod_query(user_text):
        nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
        response = f"**{nasa_title}**\n\n{nasa_explanation}"
        chat_history.append({'role': 'user', 'content': user_text})
        chat_history.append({'role': 'assistant', 'content': response})
        follow_up = generate_follow_up(user_text)
        chat_history.append({'role': 'assistant', 'content': follow_up})
        return response, follow_up, chat_history, nasa_url

    # Otherwise, treat NASA-related queries as general queries.
    hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
    filtered_history = ""
    for message in chat_history:
        if message["role"] == "assistant" and message["content"].strip() == "Hello! How can I assist you today?":
            continue
        filtered_history += f"{message['role']}: {message['content']}\n"
    
    # Extract style instructions if provided.
    style_instruction = ""
    lower_text = user_text.lower()
    if "in the voice of" in lower_text or "speaking as" in lower_text:
        match = re.search(r"(in the voice of|speaking as)(.*)", lower_text)
        if match:
            style_instruction = match.group(2).strip().capitalize()
            style_instruction = f" Please respond in the voice of {style_instruction}."
    
    context_info = extract_context(user_text)
    context_clause = f" The key topics here are: {context_info}." if context_info else ""
    language_clause = " Answer exclusively in English."
    
    style_clause = style_instruction if style_instruction else ""
    
    prompt = PromptTemplate.from_template(
        (
            "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
            "User: {user_text}.\n [/INST]\n"
            "AI: Please provide a detailed, in-depth answer in a friendly, conversational tone that thoroughly covers the topic."
            + style_clause + context_clause + language_clause +
            "\nHAL:"
        )
    )
    
    chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
    raw_output = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
    response = raw_output.split("HAL:")[-1].strip()
    if not response:
        response = "Certainly, here is an in-depth explanation: [Fallback explanation]."
    
    chat_history.append({'role': 'user', 'content': user_text})
    chat_history.append({'role': 'assistant', 'content': response})
    
    if sentiment == "NEGATIVE" and not user_text.strip().endswith("?"):
        response = "I'm sorry you're feeling this way. I'm here to help. What can I do to assist you further?"
        chat_history[-1]['content'] = response
    
    follow_up = generate_follow_up(user_text)
    chat_history.append({'role': 'assistant', 'content': follow_up})
    
    return response, follow_up, chat_history, None

# --- Chat UI ---
st.title("πŸš€ HAL - Your NASA AI Assistant")
st.markdown("🌌 *Ask me about space, NASA, and beyond!*")

if st.sidebar.button("Reset Chat"):
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
    st.session_state.response_ready = False
    st.session_state.follow_up = ""
    st.experimental_rerun()

st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
    if message["role"] == "user":
        st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
    else:
        st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)

user_input = st.chat_input("Type your message here...")

if user_input:
    response, follow_up, st.session_state.chat_history, image_url = get_response(
        system_message="You are a helpful AI assistant.",
        user_text=user_input,
        chat_history=st.session_state.chat_history
    )
    if image_url:
        st.image(image_url, caption="NASA Image of the Day")
    st.session_state.follow_up = follow_up
    st.session_state.response_ready = True