File size: 8,570 Bytes
a3e0475
ffbccbb
1fd6803
fc5f1c7
d6f5773
fc5f1c7
a3e0475
 
5c095c6
fc42bd4
e3d3d36
 
 
 
 
 
 
 
 
 
5c095c6
 
e3d3d36
5c095c6
 
 
1fd6803
5c095c6
1fd6803
391ca85
e3d3d36
94ac9e7
5c095c6
 
 
 
 
fc5f1c7
5c095c6
 
a3e0475
 
 
391ca85
5c095c6
a3e0475
 
94ac9e7
391ca85
94ac9e7
 
 
5c095c6
94ac9e7
e3d3d36
073538f
fc5f1c7
 
5c095c6
fc5f1c7
 
e3d3d36
 
 
fc5f1c7
 
e3d3d36
 
 
 
fc5f1c7
e3d3d36
 
 
fc5f1c7
1fd6803
 
 
 
 
 
 
fc5f1c7
5c095c6
e3d3d36
 
 
 
 
fc5f1c7
 
e3d3d36
 
ffbccbb
 
 
 
 
 
 
d4c5e46
fc5f1c7
5c095c6
 
2a239ae
5c095c6
fc5f1c7
 
5c095c6
e3d3d36
5c095c6
ad1c148
 
 
 
 
d4c5e46
1fd6803
e3d3d36
 
2a239ae
ad0b8d6
fc42bd4
 
e3d3d36
 
 
ffbccbb
ad0b8d6
2a239ae
e3d3d36
2a239ae
ad1c148
e3d3d36
5c095c6
e3d3d36
 
fdf3b40
 
e3d3d36
2a239ae
 
e3d3d36
4b25132
f6bb49b
 
e3d3d36
fc5f1c7
 
391ca85
e3d3d36
391ca85
e3d3d36
0b6b797
5c095c6
2a239ae
391ca85
 
 
 
 
5c095c6
e3d3d36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c095c6
1fd6803
f543f0b
ad0b8d6
5c095c6
ad0b8d6
 
5c095c6
ad0b8d6
5c095c6
 
 
 
e3d3d36
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import re
import random
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline

# Use environment variables for keys
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
    raise ValueError("HF_TOKEN environment variable not set. Please set it in your Hugging Face Space settings.")

NASA_API_KEY = os.getenv("NASA_API_KEY")
if NASA_API_KEY is None:
    raise ValueError("NASA_API_KEY environment variable not set. Please set it in your Hugging Face Space settings.")

# Set up Streamlit UI
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")

# --- Initialize Session State Variables ---
if "chat_history" not in st.session_state:
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
if "response_ready" not in st.session_state:
    st.session_state.response_ready = False
if "follow_up" not in st.session_state:
    st.session_state.follow_up = ""

# --- Set Up Model & API Functions ---
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
sentiment_analyzer = pipeline(
    "sentiment-analysis",
    model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
    revision="714eb0f"
)

def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7):
    return HuggingFaceEndpoint(
        repo_id=model_id,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        token=HF_TOKEN,
        task="text-generation"
    )

def get_nasa_apod():
    url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
    response = requests.get(url)
    if response.status_code == 200:
        data = response.json()
        return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
    else:
        return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."

def analyze_sentiment(user_text):
    result = sentiment_analyzer(user_text)[0]
    return result['label']

def predict_action(user_text):
    if "NASA" in user_text or "space" in user_text:
        return "nasa_info"
    return "general_query"

def generate_follow_up(user_text):
    """
    Generates two variant follow-up questions and randomly selects one.
    It also cleans up any unwanted quotation marks or extra meta commentary.
    """
    prompt_text = (
        f"Based on the user's question: '{user_text}', generate two concise, friendly follow-up questions "
        "that invite further discussion. For example, one might be 'Would you like to know more about the six types of quarks?' "
        "and another might be 'Would you like to explore another aspect of quantum physics?' Do not include extra commentary."
    )
    hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
    output = hf.invoke(input=prompt_text).strip()
    variants = re.split(r"\n|[;]+", output)
    cleaned = [v.strip(' "\'') for v in variants if v.strip()]
    if not cleaned:
        cleaned = ["Would you like to explore this topic further?"]
    return random.choice(cleaned)

def get_response(system_message, chat_history, user_text, max_new_tokens=256):
    """
    Generates HAL's answer with depth and a follow-up question.
    The prompt instructs the model to provide a detailed explanation and then generate a follow-up.
    If the answer comes back empty, a fallback answer is used.
    """
    sentiment = analyze_sentiment(user_text)
    action = predict_action(user_text)
    
    # Extract style instruction if present
    style_instruction = ""
    lower_text = user_text.lower()
    if "in the voice of" in lower_text or "speaking as" in lower_text:
        match = re.search(r"(in the voice of|speaking as)(.*)", lower_text)
        if match:
            style_instruction = match.group(2).strip().capitalize()
            style_instruction = f" Please respond in the voice of {style_instruction}."
    
    if action == "nasa_info":
        nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
        response = f"**{nasa_title}**\n\n{nasa_explanation}"
        chat_history.append({'role': 'user', 'content': user_text})
        chat_history.append({'role': 'assistant', 'content': response})
        follow_up = generate_follow_up(user_text)
        chat_history.append({'role': 'assistant', 'content': follow_up})
        return response, follow_up, chat_history, nasa_url
    
    hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
    filtered_history = ""
    for message in chat_history:
        if message["role"] == "assistant" and message["content"].strip() == "Hello! How can I assist you today?":
            continue
        filtered_history += f"{message['role']}: {message['content']}\n"
    
    style_clause = style_instruction if style_instruction else ""
    
    # Instruct the model to generate a detailed, in-depth answer.
    prompt = PromptTemplate.from_template(
        (
            "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
            "User: {user_text}.\n [/INST]\n"
            "AI: Please provide a detailed explanation in depth. "
            "Ensure your response covers the topic thoroughly and is written in a friendly, conversational style, "
            "starting with a phrase like 'Certainly!', 'Of course!', or 'Great question!'." + style_clause +
            "\nHAL:"
        )
    )
    
    chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
    response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
    # Remove any extra markers if present.
    response = response.split("HAL:")[-1].strip()
    
    # Fallback in case the generated answer is empty
    if not response:
        response = "Certainly, here is an in-depth explanation: [Fallback explanation]."
    
    chat_history.append({'role': 'user', 'content': user_text})
    chat_history.append({'role': 'assistant', 'content': response})
    
    if sentiment == "NEGATIVE" and not user_text.strip().endswith("?"):
        response = "I'm sorry you're feeling this way. I'm here to help. What can I do to assist you further?"
        chat_history[-1]['content'] = response
    
    follow_up = generate_follow_up(user_text)
    chat_history.append({'role': 'assistant', 'content': follow_up})
    
    return response, follow_up, chat_history, None

# --- Chat UI ---
st.title("πŸš€ HAL - Your NASA AI Assistant")
st.markdown("🌌 *Ask me about space, NASA, and beyond!*")

if st.sidebar.button("Reset Chat"):
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
    st.session_state.response_ready = False
    st.session_state.follow_up = ""
    st.experimental_rerun()

st.markdown("""
    <style>
    .user-msg {
        background-color: #696969;
        color: white;
        padding: 10px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
    }
    .assistant-msg {
        background-color: #333333;
        color: white;
        padding: 10px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
    }
    .container {
        display: flex;
        flex-direction: column;
        align-items: flex-start;
    }
    @media (max-width: 600px) {
        .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
    }
    </style>
""", unsafe_allow_html=True)

user_input = st.chat_input("Type your message here...")

if user_input:
    response, follow_up, st.session_state.chat_history, image_url = get_response(
        system_message="You are a helpful AI assistant.",
        user_text=user_input,
        chat_history=st.session_state.chat_history
    )
    if image_url:
        st.image(image_url, caption="NASA Image of the Day")
    st.session_state.follow_up = follow_up
    st.session_state.response_ready = True

st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
    if message["role"] == "user":
        st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
    else:
        st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)