File size: 8,462 Bytes
a3e0475
ffbccbb
1fd6803
fc5f1c7
d6f5773
fc5f1c7
a3e0475
 
5c095c6
546ff54
fc42bd4
546ff54
ab8074b
594a593
546ff54
ab8074b
594a593
 
546ff54
ab8074b
546ff54
b256ef1
5c095c6
594a593
5c095c6
594a593
5c095c6
1fd6803
5c095c6
1fd6803
391ca85
546ff54
94ac9e7
fc5f1c7
594a593
 
5c095c6
a3e0475
 
 
258dcf5
5c095c6
a3e0475
 
546ff54
94ac9e7
258dcf5
94ac9e7
 
 
5c095c6
546ff54
 
 
594a593
 
 
 
073538f
258dcf5
 
 
 
546ff54
ac55e19
546ff54
 
ac55e19
 
594a593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import re
import random
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
from langdetect import detect  # Ensure this package is installed

# βœ… Environment Variables
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
    raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.")

NASA_API_KEY = os.getenv("NASA_API_KEY")
if NASA_API_KEY is None:
    raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.")

# βœ… Set Up Streamlit
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")

# βœ… Ensure Session State Variables
if "chat_history" not in st.session_state:
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
if "response_ready" not in st.session_state:
    st.session_state.response_ready = False
if "follow_up" not in st.session_state:
    st.session_state.follow_up = ""

# βœ… Model Configuration
model_id = "mistralai/Mistral-7B-Instruct-v0.3"

# βœ… Initialize Hugging Face Model
def get_llm_hf_inference(model_id=model_id, max_new_tokens=1024, temperature=0.7):
    return HuggingFaceEndpoint(
        repo_id=model_id,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        token=HF_TOKEN,
        task="text-generation"
    )

# βœ… NASA API Function
def get_nasa_apod():
    url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
    response = requests.get(url)
    if response.status_code == 200:
        data = response.json()
        return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
    return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now."

# βœ… Sentiment Analysis
sentiment_analyzer = pipeline(
    "sentiment-analysis",
    model="distilbert/distilbert-base-uncased-finetuned-sst-2-english"
)

def analyze_sentiment(user_text):
    result = sentiment_analyzer(user_text)[0]
    return result['label']

# βœ… Intent Detection
def predict_action(user_text):
    if "NASA" in user_text or "space" in user_text:
        return "nasa_info"
    return "general_query"

# βœ… Follow-Up Question Generation
def generate_follow_up(user_text):
    prompt_text = f"Based on: '{user_text}', generate a concise, friendly follow-up."
    hf = get_llm_hf_inference(max_new_tokens=80, temperature=0.9)
    output = hf.invoke(input=prompt_text).strip()
    return output if output else "Would you like to explore this topic further?"

# βœ… Ensure English Responses
def ensure_english(text):
    try:
        detected_lang = detect(text)
        if detected_lang != "en":
            return "⚠️ Sorry, I only respond in English. Can you rephrase your question?"
    except:
        return "⚠️ Language detection failed. Please ask your question again."
    return text

# βœ… Ensure Every Response Has a Follow-Up Question
def generate_follow_up(user_text):
    """Generates a follow-up question to guide the user toward related topics or next steps."""
    prompt_text = (
        f"Given the user's question: '{user_text}', generate a SHORT follow-up question "
        "suggesting either a related topic or asking if they need further help. "
        "Example: 'Would you like to explore quantum superposition or ask about another physics concept?' "
        "Keep it concise and engaging."
    )
    hf = get_llm_hf_inference(max_new_tokens=40, temperature=0.8)
    output = hf.invoke(input=prompt_text).strip()
    
    # Fallback in case of an empty response
    return output if output else "Would you like to explore another related topic or ask about something else?"

# βœ… Main Response Function
def get_response(system_message, chat_history, user_text, max_new_tokens=512):
    action = predict_action(user_text)  # πŸ”₯ Fix: Define 'action'

    # βœ… Handle NASA-Specific Queries
    if action == "nasa_info":
        nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
        response = f"**{nasa_title}**\n\n{nasa_explanation}"
        chat_history.append({'role': 'user', 'content': user_text})
        chat_history.append({'role': 'assistant', 'content': response})
        follow_up = generate_follow_up(user_text)
        chat_history.append({'role': 'assistant', 'content': follow_up})
        return response, follow_up, chat_history, nasa_url

    # βœ… Set Up LLM Request
    hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)

    # βœ… Format Chat History
    filtered_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history)

    # βœ… Prompt Engineering
    prompt = PromptTemplate.from_template(
        "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
        "User: {user_text}.\n [/INST]\n"
        "AI: Provide a detailed explanation with depth. "
        "Use a conversational style, starting with 'Certainly!', 'Of course!', or 'Great question!'."
        "🚨 Answer **only in English**."
        "\nHAL:"
    )

    # βœ… Invoke LLM Model
    chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
    response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
    response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip()

    # βœ… Ensure English
    response = ensure_english(response)

    # βœ… Fallback Response
    if not response:
        response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?"

    chat_history.append({'role': 'user', 'content': user_text})
    chat_history.append({'role': 'assistant', 'content': response})

    follow_up = generate_follow_up(user_text)
    chat_history.append({'role': 'assistant', 'content': follow_up})

    return response, follow_up, chat_history, None

# βœ… Streamlit UI
st.title("πŸš€ HAL - NASA AI Assistant")

# βœ… Justify all chatbot responses
st.markdown("""
    <style>
    .user-msg {
        background-color: #696969;
        color: white;
        padding: 10px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
        text-align: justify;  /* βœ… Justify text */
    }
    .assistant-msg {
        background-color: #333333;
        color: white;
        padding: 10px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
        text-align: justify;  /* βœ… Justify text */
    }
    .container {
        display: flex;
        flex-direction: column;
        align-items: flex-start;
    }
    @media (max-width: 600px) {
        .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; }
    }
    </style>
""", unsafe_allow_html=True)


# βœ… Reset Chat Button
if st.sidebar.button("Reset Chat"):
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
    st.session_state.response_ready = False
    st.session_state.follow_up = ""

# βœ… Chat UI
user_input = st.chat_input("Type your message here...")

if user_input:
    # Save user message
    st.session_state.chat_history.append({'role': 'user', 'content': user_input})

    # Get AI response (replace with actual function)
    response = "This is HAL's response."  # Example response
    follow_up = "Would you like to explore a related topic?"  # Follow-up suggestion

    # Save AI response & follow-up
    st.session_state.chat_history.append({'role': 'assistant', 'content': response})
    st.session_state.chat_history.append({'role': 'assistant', 'content': follow_up})

    # Store follow-up question separately if needed
    st.session_state.follow_up = follow_up

    # βœ… Ensure response is not empty before calling st.markdown()
    if response:
        st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)

    st.session_state.follow_up = follow_up
    st.session_state.response_ready = True

# βœ… Check before displaying follow-up message
if st.session_state.response_ready and st.session_state.follow_up:
    st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {st.session_state.follow_up}</div>", unsafe_allow_html=True)
    st.session_state.response_ready = False