Spaces:
Sleeping
Sleeping
File size: 1,486 Bytes
23a5053 09f0cd3 d23a6f2 2f2edb0 84c0256 f5a2b6c d23a6f2 54bb1a5 0eff587 d23a6f2 54bb1a5 f5a2b6c cad50da 27c948e 0eff587 f5a2b6c cad50da f5a2b6c cad50da 84c0256 f5a2b6c d23a6f2 54bb1a5 84c0256 27c948e 23a5053 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import torch
import torch.nn as nn
import torch.nn.functional as F
class EvoEncoder(nn.Module):
def __init__(self, d_model=512, num_heads=8, ffn_dim=1024, num_layers=6, memory_enabled=True):
super().__init__()
self.embedding = nn.Embedding(30522, d_model)
encoder_layer = nn.TransformerEncoderLayer(
d_model=d_model,
nhead=num_heads,
dim_feedforward=ffn_dim,
batch_first=True
)
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
self.memory_enabled = memory_enabled
if memory_enabled:
self.memory_proj = nn.Linear(d_model, d_model)
self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
def forward(self, input_ids):
x = self.embedding(input_ids)
if self.memory_enabled:
mem = self.memory_token.expand(x.size(0), -1, -1)
x = torch.cat([mem, x], dim=1)
x = self.transformer(x)
return x[:, 0] # Return memory token or first token
class EvoTransformer(nn.Module):
def __init__(self, d_model=512, num_heads=8, ffn_dim=1024, num_layers=6, num_classes=1, memory_enabled=True):
super().__init__()
self.encoder = EvoEncoder(d_model, num_heads, ffn_dim, num_layers, memory_enabled)
self.classifier = nn.Linear(d_model, num_classes)
def forward(self, input_ids):
x = self.encoder(input_ids)
return self.classifier(x)
|