File size: 31,662 Bytes
bd71161
 
 
 
 
dc6db5b
53200cd
975a0e4
bd71161
fafc478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
608d8aa
 
 
782b343
608d8aa
 
 
 
 
 
 
 
 
 
1435559
 
 
 
 
608d8aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51b72f7
 
608d8aa
c9fc99e
 
608d8aa
 
 
 
 
975a0e4
b16c88e
608d8aa
d4c1f23
5cdd7c2
1c7206a
 
5cdd7c2
9c6d7f2
1c7206a
 
 
 
 
 
 
 
5cdd7c2
1c7206a
5cdd7c2
d4c1f23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fafc478
b16c88e
 
 
 
 
9c6d7f2
b16c88e
 
 
 
 
 
 
20628b5
b16c88e
d4c1f23
fafc478
d4c1f23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fafc478
20628b5
 
 
 
 
9c6d7f2
20628b5
 
 
 
 
 
 
 
 
d4c1f23
 
d0d758e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c6d7f2
d0d758e
 
 
 
 
 
 
 
 
 
 
b497e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e05402d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c7ada1
e05402d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b50994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c6d7f2
5b50994
 
 
 
 
 
 
 
 
 
 
d4c1f23
 
e05402d
d4c1f23
 
e05402d
d4c1f23
 
fafc478
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
import os
import random
import gradio as gr
import sentencepiece as spm
import numpy as np
import pandas as pd
import tensorflow as tf
from valx import detect_profanity, detect_hate_speech

def custom_pad_sequences(sequences, maxlen, padding='pre', value=0):
    """
    Pads sequences to the same length.

    :param sequences: List of lists, where each element is a sequence.
    :param maxlen: Maximum length of all sequences.
    :param padding: 'pre' or 'post', pad either before or after each sequence.
    :param value: Float, padding value.
    :return: Numpy array with dimensions (number_of_sequences, maxlen)
    """
    padded_sequences = np.full((len(sequences), maxlen), value)
    for i, seq in enumerate(sequences):
        if padding == 'pre':
            if len(seq) <= maxlen:
                padded_sequences[i, -len(seq):] = seq
            else:
                padded_sequences[i, :] = seq[-maxlen:]
        elif padding == 'post':
            if len(seq) <= maxlen:
                padded_sequences[i, :len(seq)] = seq
            else:
                padded_sequences[i, :] = seq[:maxlen]
    return padded_sequences

def generate_random_name(interpreter, vocab_size, sp, max_length=10, temperature=0.5, seed_text="", max_seq_len=12):
    # Get input and output tensors
    input_details = interpreter.get_input_details()
    output_details = interpreter.get_output_details()
    decoded_name = ''

    if seed_text:
        generated_name = seed_text
    else:
        random_index = np.random.randint(1, vocab_size)
        random_token = sp.id_to_piece(random_index)
        generated_name = random_token

    for _ in range(max_length - 1):
        token_list = sp.encode_as_ids(generated_name)

        # Handle empty token list case
        if len(token_list) == 0:
            continue  # Skip the current iteration if the token list is empty
            
        # Pad to the correct length expected by the model
        token_list = custom_pad_sequences([token_list], maxlen=max_seq_len, padding='pre') 

        # Convert token_list to FLOAT32 before setting the tensor
        token_list = token_list.astype(np.float32)

        # Set the input tensor
        interpreter.set_tensor(input_details[0]['index'], token_list)

        # Run inference
        interpreter.invoke()

        # Get the output tensor
        predicted = interpreter.get_tensor(output_details[0]['index'])[0]

        # Apply temperature to predictions
        predicted = np.log(predicted + 1e-8) / temperature
        predicted = np.exp(predicted) / np.sum(np.exp(predicted))

        # Sample from the distribution
        next_index = np.random.choice(range(vocab_size), p=predicted)
        next_index = int(next_index)
        next_token = sp.id_to_piece(next_index)

        generated_name += next_token

        # Decode the generated subword tokens into a string
        decoded_name = sp.decode_pieces(generated_name.split())

        # Stop if end token is predicted (optional)
        if next_token == '' or len(decoded_name) > max_length:
            break

    decoded_name = decoded_name.replace("▁", " ")
    decoded_name = decoded_name.replace("</s>", "")
    decoded_name = decoded_name.replace("<unk>", "")
    decoded_name = decoded_name.replace("<s>", "")
    generated_name = decoded_name.rsplit(' ', 1)[0]
    if generated_name:
        generated_name = generated_name[0].upper() + generated_name[1:]

    # Split the name and check the last part
    parts = generated_name.split()
    if parts and len(parts[-1]) < 3:
        generated_name = " ".join(parts[:-1])
        
    return generated_name.strip()

def generateNames(type, amount, max_length=30, temperature=0.5, seed_text=""):
    hate_speech = detect_hate_speech(seed_text)
    profanity = detect_profanity([seed_text], language='All')
    output = ''
    
    if len(profanity) > 0:
        gr.Warning("Profanity detected in the seed text, using an empty seed text.")
        seed_text = ''
    else:
        if hate_speech == ['Hate Speech']:
            gr.Warning('Hate speech detected in the seed text, using an empty seed text.')
            seed_text = ''
        elif hate_speech == ['Offensive Speech']:
            gr.Warning('Offensive speech detected in the seed text, using an empty seed text.')
            seed_text = ''
        # elif hate_speech == ['No Hate and Offensive Speech']:
    
    if type == "Terraria":
        max_seq_len = 12 # For skyrim = 13, for terraria = 12
        sp = spm.SentencePieceProcessor()
        sp.load("models/terraria_names.model")
        amount = int(amount)
        max_length = int(max_length)

        names = []

        # Define necessary variables
        vocab_size = sp.GetPieceSize()

        # Load TFLite model
        interpreter = tf.lite.Interpreter(model_path="models/dungen_terraria_model.tflite")
        interpreter.allocate_tensors()

        # Use the function to generate a name
        for _ in range(amount):
            generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
            stripped = generated_name.strip()
            hate_speech = detect_hate_speech(stripped)
            profanity = detect_profanity([stripped], language='All')
            name = ''
    
            if len(profanity) > 0:
                name = "Profanity Detected"
            else:
                if hate_speech == ['Hate Speech']:
                    name = 'Hate Speech Detected'
                elif hate_speech == ['Offensive Speech']:
                    name = 'Offensive Speech Detected'
                elif hate_speech == ['No Hate and Offensive Speech']:
                    name = stripped
            names.append(name)
        return pd.DataFrame(names, columns=['Names'])

    elif type == "Skyrim":
        max_seq_len = 13 # For skyrim = 13, for terraria = 12
        sp = spm.SentencePieceProcessor()
        sp.load("models/skyrim_names.model")
        amount = int(amount)
        max_length = int(max_length)

        names = []

        # Define necessary variables
        vocab_size = sp.GetPieceSize()

        # Load TFLite model
        interpreter = tf.lite.Interpreter(model_path="models/dungen_skyrim_model.tflite")
        interpreter.allocate_tensors()

        # Use the function to generate a name
        for _ in range(amount):
            generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
            stripped = generated_name.strip()
            hate_speech = detect_hate_speech(stripped)
            profanity = detect_profanity([stripped], language='All')
            name = ''
    
            if len(profanity) > 0:
                name = "Profanity Detected"
            else:
                if hate_speech == ['Hate Speech']:
                    name = 'Hate Speech Detected'
                elif hate_speech == ['Offensive Speech']:
                    name = 'Offensive Speech Detected'
                elif hate_speech == ['No Hate and Offensive Speech']:
                    name = stripped
            names.append(name)
        return pd.DataFrame(names, columns=['Names'])

    elif type == "Witcher":
        max_seq_len = 20 # For skyrim = 13, for terraria = 12
        sp = spm.SentencePieceProcessor()
        sp.load("models/witcher_names.model")
        amount = int(amount)
        max_length = int(max_length)

        names = []

        # Define necessary variables
        vocab_size = sp.GetPieceSize()

        # Load TFLite model
        interpreter = tf.lite.Interpreter(model_path="models/dungen_witcher_model.tflite")
        interpreter.allocate_tensors()

        # Use the function to generate a name
        for _ in range(amount):
            generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
            stripped = generated_name.strip()
            hate_speech = detect_hate_speech(stripped)
            profanity = detect_profanity([stripped], language='All')
            name = ''
    
            if len(profanity) > 0:
                name = "Profanity Detected"
            else:
                if hate_speech == ['Hate Speech']:
                    name = 'Hate Speech Detected'
                elif hate_speech == ['Offensive Speech']:
                    name = 'Offensive Speech Detected'
                elif hate_speech == ['No Hate and Offensive Speech']:
                    name = stripped
            names.append(name)
        return pd.DataFrame(names, columns=['Names'])

    elif type == "WOW":
        max_seq_len = 16 # For skyrim = 13, for terraria = 12
        sp = spm.SentencePieceProcessor()
        sp.load("models/wow_names.model")
        amount = int(amount)
        max_length = int(max_length)

        names = []

        # Define necessary variables
        vocab_size = sp.GetPieceSize()

        # Load TFLite model
        interpreter = tf.lite.Interpreter(model_path="models/dungen_wow_model.tflite")
        interpreter.allocate_tensors()

        # Use the function to generate a name
        for _ in range(amount):
            generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
            stripped = generated_name.strip()
            hate_speech = detect_hate_speech(stripped)
            profanity = detect_profanity([stripped], language='All')
            name = ''
    
            if len(profanity) > 0:
                name = "Profanity Detected"
            else:
                if hate_speech == ['Hate Speech']:
                    name = 'Hate Speech Detected'
                elif hate_speech == ['Offensive Speech']:
                    name = 'Offensive Speech Detected'
                elif hate_speech == ['No Hate and Offensive Speech']:
                    name = stripped
            names.append(name)
        return pd.DataFrame(names, columns=['Names'])

    elif type == "Minecraft":
        max_seq_len = 17 # For skyrim = 13, for terraria = 12
        sp = spm.SentencePieceProcessor()
        sp.load("models/minecraft_names.model")
        amount = int(amount)
        max_length = int(max_length)

        names = []

        # Define necessary variables
        vocab_size = sp.GetPieceSize()

        # Load TFLite model
        interpreter = tf.lite.Interpreter(model_path="models/dungen_minecraft_model.tflite")
        interpreter.allocate_tensors()

        # Use the function to generate a name
        for _ in range(amount):
            generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
            stripped = generated_name.strip()
            hate_speech = detect_hate_speech(stripped)
            profanity = detect_profanity([stripped], language='All')
            name = ''
    
            if len(profanity) > 0:
                name = "Profanity Detected"
            else:
                if hate_speech == ['Hate Speech']:
                    name = 'Hate Speech Detected'
                elif hate_speech == ['Offensive Speech']:
                    name = 'Offensive Speech Detected'
                elif hate_speech == ['No Hate and Offensive Speech']:
                    name = stripped
            names.append(name)
        return pd.DataFrame(names, columns=['Names'])

    elif type == "Dark Souls":
        max_seq_len = 13 # For skyrim = 13, for terraria = 12
        sp = spm.SentencePieceProcessor()
        sp.load("models/dark_souls_names.model")
        amount = int(amount)
        max_length = int(max_length)

        names = []

        # Define necessary variables
        vocab_size = sp.GetPieceSize()

        # Load TFLite model
        interpreter = tf.lite.Interpreter(model_path="models/dungen_dark_souls_model.tflite")
        interpreter.allocate_tensors()

        # Use the function to generate a name
        for _ in range(amount):
            generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
            stripped = generated_name.strip()
            hate_speech = detect_hate_speech(stripped)
            profanity = detect_profanity([stripped], language='All')
            name = ''
    
            if len(profanity) > 0:
                name = "Profanity Detected"
            else:
                if hate_speech == ['Hate Speech']:
                    name = 'Hate Speech Detected'
                elif hate_speech == ['Offensive Speech']:
                    name = 'Offensive Speech Detected'
                elif hate_speech == ['No Hate and Offensive Speech']:
                    name = stripped
            names.append(name)
        return pd.DataFrame(names, columns=['Names'])

    elif type == "Final Fantasy":
        max_seq_len = 14
        sp = spm.SentencePieceProcessor()
        sp.load("models/final_fantasy_names.model")
        amount = int(amount)
        max_length = int(max_length)

        names = []

        # Define necessary variables
        vocab_size = sp.GetPieceSize()

        # Load TFLite model
        interpreter = tf.lite.Interpreter(model_path="models/dungen_final_fantasy_model.tflite")
        interpreter.allocate_tensors()

        # Use the function to generate a name
        for _ in range(amount):
            generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
            stripped = generated_name.strip()
            hate_speech = detect_hate_speech(stripped)
            profanity = detect_profanity([stripped], language='All')
            name = ''
    
            if len(profanity) > 0:
                name = "Profanity Detected"
            else:
                if hate_speech == ['Hate Speech']:
                    name = 'Hate Speech Detected'
                elif hate_speech == ['Offensive Speech']:
                    name = 'Offensive Speech Detected'
                elif hate_speech == ['No Hate and Offensive Speech']:
                    name = stripped
            names.append(name)
        return pd.DataFrame(names, columns=['Names'])

    elif type == "Elden Ring":
        max_seq_len = 18
        sp = spm.SentencePieceProcessor()
        sp.load("models/elden_ring_names.model")
        amount = int(amount)
        max_length = int(max_length)

        names = []

        # Define necessary variables
        vocab_size = sp.GetPieceSize()

        # Load TFLite model
        interpreter = tf.lite.Interpreter(model_path="models/dungen_elden_ring_model.tflite")
        interpreter.allocate_tensors()

        # Use the function to generate a name
        for _ in range(amount):
            generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
            stripped = generated_name.strip()
            hate_speech = detect_hate_speech(stripped)
            profanity = detect_profanity([stripped], language='All')
            name = ''
    
            if len(profanity) > 0:
                name = "Profanity Detected"
            else:
                if hate_speech == ['Hate Speech']:
                    name = 'Hate Speech Detected'
                elif hate_speech == ['Offensive Speech']:
                    name = 'Offensive Speech Detected'
                elif hate_speech == ['No Hate and Offensive Speech']:
                    name = stripped
            names.append(name)
        return pd.DataFrame(names, columns=['Names'])

    elif type == "Zelda":
        max_seq_len = 15
        sp = spm.SentencePieceProcessor()
        sp.load("models/zelda_names.model")
        amount = int(amount)
        max_length = int(max_length)

        names = []

        # Define necessary variables
        vocab_size = sp.GetPieceSize()

        # Load TFLite model
        interpreter = tf.lite.Interpreter(model_path="models/dungen_zelda_model.tflite")
        interpreter.allocate_tensors()

        # Use the function to generate a name
        for _ in range(amount):
            generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
            stripped = generated_name.strip()
            hate_speech = detect_hate_speech(stripped)
            profanity = detect_profanity([stripped], language='All')
            name = ''
    
            if len(profanity) > 0:
                name = "Profanity Detected"
            else:
                if hate_speech == ['Hate Speech']:
                    name = 'Hate Speech Detected'
                elif hate_speech == ['Offensive Speech']:
                    name = 'Offensive Speech Detected'
                elif hate_speech == ['No Hate and Offensive Speech']:
                    name = stripped
            names.append(name)
        return pd.DataFrame(names, columns=['Names'])

    elif type == "Dragon Age":
        max_seq_len = 16 # For skyrim = 13, for terraria = 12
        sp = spm.SentencePieceProcessor()
        sp.load("models/dragon_age_names.model")
        amount = int(amount)
        max_length = int(max_length)

        names = []

        # Define necessary variables
        vocab_size = sp.GetPieceSize()

        # Load TFLite model
        interpreter = tf.lite.Interpreter(model_path="models/dungen_dragon_age_model.tflite")
        interpreter.allocate_tensors()

        # Use the function to generate a name
        for _ in range(amount):
            generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
            stripped = generated_name.strip()
            hate_speech = detect_hate_speech(stripped)
            profanity = detect_profanity([stripped], language='All')
            name = ''
    
            if len(profanity) > 0:
                name = "Profanity Detected"
            else:
                if hate_speech == ['Hate Speech']:
                    name = 'Hate Speech Detected'
                elif hate_speech == ['Offensive Speech']:
                    name = 'Offensive Speech Detected'
                elif hate_speech == ['No Hate and Offensive Speech']:
                    name = stripped
            names.append(name)
        return pd.DataFrame(names, columns=['Names'])

    elif type == "Fallout":
        max_seq_len = 13
        sp = spm.SentencePieceProcessor()
        sp.load("models/fallout_names.model")
        amount = int(amount)
        max_length = int(max_length)

        names = []

        # Define necessary variables
        vocab_size = sp.GetPieceSize()

        # Load TFLite model
        interpreter = tf.lite.Interpreter(model_path="models/dungen_fallout_model.tflite")
        interpreter.allocate_tensors()

        # Use the function to generate a name
        for _ in range(amount):
            generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
            stripped = generated_name.strip()
            hate_speech = detect_hate_speech(stripped)
            profanity = detect_profanity([stripped], language='All')
            name = ''
    
            if len(profanity) > 0:
                name = "Profanity Detected"
            else:
                if hate_speech == ['Hate Speech']:
                    name = 'Hate Speech Detected'
                elif hate_speech == ['Offensive Speech']:
                    name = 'Offensive Speech Detected'
                elif hate_speech == ['No Hate and Offensive Speech']:
                    name = stripped
            names.append(name)
        return pd.DataFrame(names, columns=['Names'])

    elif type == "Darkest Dungeon":
        max_seq_len = 14
        sp = spm.SentencePieceProcessor()
        sp.load("models/darkest_dungeon_names.model")
        amount = int(amount)
        max_length = int(max_length)

        names = []

        # Define necessary variables
        vocab_size = sp.GetPieceSize()

        # Load TFLite model
        interpreter = tf.lite.Interpreter(model_path="models/dungen_darkest_dungeon_model.tflite")
        interpreter.allocate_tensors()

        # Use the function to generate a name
        for _ in range(amount):
            generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
            stripped = generated_name.strip()
            hate_speech = detect_hate_speech(stripped)
            profanity = detect_profanity([stripped], language='All')
            name = ''
    
            if len(profanity) > 0:
                name = "Profanity Detected"
            else:
                if hate_speech == ['Hate Speech']:
                    name = 'Hate Speech Detected'
                elif hate_speech == ['Offensive Speech']:
                    name = 'Offensive Speech Detected'
                elif hate_speech == ['No Hate and Offensive Speech']:
                    name = stripped
            names.append(name)
        return pd.DataFrame(names, columns=['Names'])

    elif type == "Monster Hunter":
        max_seq_len = 15
        sp = spm.SentencePieceProcessor()
        sp.load("models/monster_hunter_names.model")
        amount = int(amount)
        max_length = int(max_length)

        names = []

        # Define necessary variables
        vocab_size = sp.GetPieceSize()

        # Load TFLite model
        interpreter = tf.lite.Interpreter(model_path="models/dungen_monster_hunter_model.tflite")
        interpreter.allocate_tensors()

        # Use the function to generate a name
        for _ in range(amount):
            generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
            stripped = generated_name.strip()
            hate_speech = detect_hate_speech(stripped)
            profanity = detect_profanity([stripped], language='All')
            name = ''
    
            if len(profanity) > 0:
                name = "Profanity Detected"
            else:
                if hate_speech == ['Hate Speech']:
                    name = 'Hate Speech Detected'
                elif hate_speech == ['Offensive Speech']:
                    name = 'Offensive Speech Detected'
                elif hate_speech == ['No Hate and Offensive Speech']:
                    name = stripped
            names.append(name)
        return pd.DataFrame(names, columns=['Names'])

    elif type == "Bloodborne":
        max_seq_len = 12
        sp = spm.SentencePieceProcessor()
        sp.load("models/bloodborne_names.model")
        amount = int(amount)
        max_length = int(max_length)

        names = []

        # Define necessary variables
        vocab_size = sp.GetPieceSize()

        # Load TFLite model
        interpreter = tf.lite.Interpreter(model_path="models/dungen_bloodborne_model.tflite")
        interpreter.allocate_tensors()

        # Use the function to generate a name
        for _ in range(amount):
            generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
            stripped = generated_name.strip()
            hate_speech = detect_hate_speech(stripped)
            profanity = detect_profanity([stripped], language='All')
            name = ''
    
            if len(profanity) > 0:
                name = "Profanity Detected"
            else:
                if hate_speech == ['Hate Speech']:
                    name = 'Hate Speech Detected'
                elif hate_speech == ['Offensive Speech']:
                    name = 'Offensive Speech Detected'
                elif hate_speech == ['No Hate and Offensive Speech']:
                    name = stripped
            names.append(name)
        return pd.DataFrame(names, columns=['Names'])

    elif type == "Hollow Knight":
        max_seq_len = 15
        sp = spm.SentencePieceProcessor()
        sp.load("models/hollow_knight_names.model")
        amount = int(amount)
        max_length = int(max_length)

        names = []

        # Define necessary variables
        vocab_size = sp.GetPieceSize()

        # Load TFLite model
        interpreter = tf.lite.Interpreter(model_path="models/dungen_hollow_knight_model.tflite")
        interpreter.allocate_tensors()

        # Use the function to generate a name
        for _ in range(amount):
            generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
            stripped = generated_name.strip()
            hate_speech = detect_hate_speech(stripped)
            profanity = detect_profanity([stripped], language='All')
            name = ''
    
            if len(profanity) > 0:
                name = "Profanity Detected"
            else:
                if hate_speech == ['Hate Speech']:
                    name = 'Hate Speech Detected'
                elif hate_speech == ['Offensive Speech']:
                    name = 'Offensive Speech Detected'
                elif hate_speech == ['No Hate and Offensive Speech']:
                    name = stripped
            names.append(name)
        return pd.DataFrame(names, columns=['Names'])

    elif type == "Assassin's Creed":
        max_seq_len = 15
        sp = spm.SentencePieceProcessor()
        sp.load("models/assassins_creed_names.model")
        amount = int(amount)
        max_length = int(max_length)

        names = []

        # Define necessary variables
        vocab_size = sp.GetPieceSize()

        # Load TFLite model
        interpreter = tf.lite.Interpreter(model_path="models/dungen_assassins_creed_model.tflite")
        interpreter.allocate_tensors()

        # Use the function to generate a name
        for _ in range(amount):
            generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
            stripped = generated_name.strip()
            hate_speech = detect_hate_speech(stripped)
            profanity = detect_profanity([stripped], language='All')
            name = ''
    
            if len(profanity) > 0:
                name = "Profanity Detected"
            else:
                if hate_speech == ['Hate Speech']:
                    name = 'Hate Speech Detected'
                elif hate_speech == ['Offensive Speech']:
                    name = 'Offensive Speech Detected'
                elif hate_speech == ['No Hate and Offensive Speech']:
                    name = stripped
            names.append(name)
        return pd.DataFrame(names, columns=['Names'])

    elif type == "Baldur's Gate":
        max_seq_len = 14
        sp = spm.SentencePieceProcessor()
        sp.load("models/baldurs_gate_names.model")
        amount = int(amount)
        max_length = int(max_length)

        names = []

        # Define necessary variables
        vocab_size = sp.GetPieceSize()

        # Load TFLite model
        interpreter = tf.lite.Interpreter(model_path="models/dungen_baldurs_gate_model.tflite")
        interpreter.allocate_tensors()

        # Use the function to generate a name
        for _ in range(amount):
            generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
            stripped = generated_name.strip()
            hate_speech = detect_hate_speech(stripped)
            profanity = detect_profanity([stripped], language='All')
            name = ''
    
            if len(profanity) > 0:
                name = "Profanity Detected"
            else:
                if hate_speech == ['Hate Speech']:
                    name = 'Hate Speech Detected'
                elif hate_speech == ['Offensive Speech']:
                    name = 'Offensive Speech Detected'
                elif hate_speech == ['No Hate and Offensive Speech']:
                    name = stripped
            names.append(name)
        return pd.DataFrame(names, columns=['Names'])

    elif type == "Fantasy":
        max_seq_len = 16 # For fantasy, 16
        sp = spm.SentencePieceProcessor()
        sp.load("models/fantasy_names.model")
        amount = int(amount)
        max_length = int(max_length)

        names = []

        # Define necessary variables
        vocab_size = sp.GetPieceSize()

        # Load TFLite model
        interpreter = tf.lite.Interpreter(model_path="models/dungen_fantasy_model.tflite")
        interpreter.allocate_tensors()

        # Use the function to generate a name
        for _ in range(amount):
            generated_name = generate_random_name(interpreter, vocab_size, sp, seed_text=seed_text, max_length=max_length, temperature=temperature, max_seq_len=max_seq_len)
            stripped = generated_name.strip()
            hate_speech = detect_hate_speech(stripped)
            profanity = detect_profanity([stripped], language='All')
            name = ''
    
            if len(profanity) > 0:
                name = "Profanity Detected"
            else:
                if hate_speech == ['Hate Speech']:
                    name = 'Hate Speech Detected'
                elif hate_speech == ['Offensive Speech']:
                    name = 'Offensive Speech Detected'
                elif hate_speech == ['No Hate and Offensive Speech']:
                    name = stripped
            names.append(name)
        return pd.DataFrame(names, columns=['Names'])

demo = gr.Interface(
    fn=generateNames,
    inputs=[gr.Radio(choices=["Terraria", "Skyrim", "Witcher", "WOW", "Minecraft", "Dark Souls", "Final Fantasy", "Elden Ring", "Zelda", "Dragon Age", "Fallout", "Darkest Dungeon", "Monster Hunter", "Bloodborne", "Hollow Knight", "Assassin's Creed", "Baldur's Gate", "Fantasy"], label="Choose a model for your request", value="Terraria"), gr.Slider(1,100, step=1, label='Amount of Names', info='How many names to generate, must be greater than 0'), gr.Slider(10, 60, value=30, step=1, label='Max Length', info='Max length of the generated word'), gr.Slider(0.1, 1, value=0.5, label='Temperature', info='Controls randomness of generation, higher values = more creative, lower values = more probalistic'), gr.Textbox('', label='Seed text (optional)', info='The starting text to begin with', max_lines=1, )],
    outputs=[gr.Dataframe(row_count = (2, "dynamic"), col_count=(1, "fixed"), label="Generated Names", headers=["Names"])],
    title='Dungen - Name Generator',
    description='A fun game-inspired name generator. For an example of how to create, and train your model, like this one, head over to: https://github.com/Infinitode/OPEN-ARC/tree/main/Project-5-TWNG. There you will find our base model, the dataset we used, and implementation code in the form of a Jupyter Notebook (exported from Kaggle).'
)

demo.launch()