Spaces:
Paused
Paused
File size: 2,457 Bytes
efffc2e 6d286f1 b336194 6d286f1 864c2ae 6d286f1 a511250 6d286f1 af02e64 6d286f1 864c2ae 6d286f1 864c2ae 6d286f1 a511250 6d286f1 864c2ae 6d286f1 efffc2e d4b2339 864c2ae efffc2e 6d286f1 864c2ae efffc2e a511250 efffc2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
import zipfile, re, os
# ===============================
# Load Model & Tokenizer
# ===============================
MODEL_NAME = "sravya-abburi/ResumeParserBERT" # Change to Kiet/autotrain-resume_parser-1159242747 if needed
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForTokenClassification.from_pretrained(MODEL_NAME)
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
# ===============================
# Extract Text (PDF & DOCX)
# ===============================
def extract_text(file_path: str) -> str:
"""Extract text from PDF or DOCX without external dependencies."""
file_path_lower = file_path.lower()
# PDF reading using PyMuPDF (built into Spaces environment)
if file_path_lower.endswith(".pdf"):
import fitz # PyMuPDF
text = ""
with fitz.open(file_path) as pdf_doc:
for page in pdf_doc:
text += page.get_text()
return text
# DOCX reading by extracting XML content
elif file_path_lower.endswith(".docx"):
with zipfile.ZipFile(file_path) as zf:
with zf.open("word/document.xml") as docx_xml:
xml_text = docx_xml.read().decode("utf-8", errors="ignore")
xml_text = re.sub(r"<w:p[^>]*>", "\n", xml_text, flags=re.I)
return re.sub(r"<[^>]+>", " ", xml_text)
return ""
# ===============================
# Parse Resume
# ===============================
def parse_resume(file_path: str, filename: str = None) -> dict:
"""Parse resume and extract structured information."""
text = extract_text(file_path)
entities = ner_pipeline(text)
name, skills, education, experience = [], [], [], []
for ent in entities:
label = ent["entity_group"].upper()
word = ent["word"].strip()
if label == "NAME":
name.append(word)
elif label == "SKILL":
skills.append(word)
elif label in ["EDUCATION", "DEGREE"]:
education.append(word)
elif label in ["EXPERIENCE", "JOB", "ROLE"]:
experience.append(word)
return {
"name": " ".join(dict.fromkeys(name)),
"skills": ", ".join(dict.fromkeys(skills)),
"education": ", ".join(dict.fromkeys(education)),
"experience": ", ".join(dict.fromkeys(experience))
}
|