File size: 40,328 Bytes
37fc0f3
 
 
13fd21a
37fc0f3
 
380c30d
37fc0f3
c30969f
 
50f1b94
33369a9
97a4ebd
33369a9
5fdb08e
e1b0e14
37fc0f3
4405c45
37fc0f3
 
5fdb08e
37fc0f3
 
5fdb08e
 
37fc0f3
 
8116b21
 
 
5fdb08e
8116b21
 
5fdb08e
 
b1878ce
5fdb08e
 
 
8f32dea
 
88dc796
cd221a3
 
 
 
8116b21
88dc796
8116b21
 
88dc796
8116b21
 
88dc796
 
 
 
8116b21
 
 
 
 
c0dd2e2
8116b21
c0dd2e2
8116b21
88dc796
18c1434
006de3e
8f32dea
5fdb08e
8f32dea
88dc796
97a4ebd
8116b21
37fc0f3
 
5fdb08e
 
 
 
 
 
 
 
 
37fc0f3
5fdb08e
 
37fc0f3
 
 
 
5fdb08e
37fc0f3
 
 
8116b21
 
 
88dc796
8f32dea
 
 
 
 
 
8116b21
5fdb08e
8116b21
b1878ce
 
88dc796
18c1434
5fdb08e
 
88dc796
5fdb08e
 
 
88dc796
 
 
 
 
 
8116b21
5fdb08e
 
 
 
 
 
8116b21
 
 
5fdb08e
8116b21
 
 
5fdb08e
8116b21
 
 
c8c786a
88dc796
5fdb08e
 
 
 
 
 
 
 
 
 
c8c786a
8116b21
 
 
 
 
 
c8c786a
 
b1878ce
 
8116b21
 
 
 
 
 
 
88dc796
 
 
 
 
 
5fdb08e
87cab7c
 
 
 
5fdb08e
87cab7c
 
 
 
8dcebd9
 
5fdb08e
 
 
 
 
 
 
 
 
 
8dcebd9
87cab7c
 
 
5fdb08e
 
 
87cab7c
 
8dcebd9
5fdb08e
 
 
 
87cab7c
 
5fdb08e
8dcebd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fdb08e
8dcebd9
 
 
 
 
 
 
 
5fdb08e
 
 
 
87cab7c
 
 
 
 
 
 
 
5fdb08e
87cab7c
 
 
 
 
 
 
 
 
 
 
 
 
5fdb08e
87cab7c
5fdb08e
87cab7c
 
 
 
 
 
8116b21
5fdb08e
c30969f
 
 
922ad18
50f1b94
 
5fdb08e
 
 
 
 
c30969f
50f1b94
 
 
f0a24cd
50f1b94
 
 
c30969f
 
 
5fdb08e
c30969f
50f1b94
5fdb08e
 
 
c30969f
 
f0a24cd
 
 
 
 
5fdb08e
 
 
c30969f
f0a24cd
 
e3dc524
 
f0a24cd
 
c30969f
e3dc524
c30969f
 
 
e3dc524
c30969f
 
 
 
 
5fdb08e
c30969f
 
5fdb08e
 
 
50f1b94
 
c30969f
 
 
3696fef
5fdb08e
c30969f
922ad18
 
c30969f
d65fd8a
c30969f
50f1b94
 
 
 
 
 
 
5fdb08e
 
 
c30969f
f0a24cd
c30969f
50f1b94
f0a24cd
50f1b94
 
 
 
 
37fc0f3
 
18c1434
37fc0f3
 
 
 
 
 
 
18c1434
6e6b619
37fc0f3
 
 
5fdb08e
 
 
37fc0f3
 
5fdb08e
37fc0f3
 
a1ba5e6
37fc0f3
 
5fdb08e
 
 
 
 
 
 
37fc0f3
380c30d
37fc0f3
380c30d
b50f687
97a4ebd
37fc0f3
 
 
5fdb08e
37fc0f3
 
 
 
 
 
 
 
 
5fdb08e
37fc0f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fdb08e
37fc0f3
 
 
 
5fdb08e
aa4d259
 
 
 
 
5fdb08e
2625be1
aa4d259
aa51e39
 
5fdb08e
37fc0f3
 
aa4d259
18c1434
37fc0f3
 
 
ef08538
 
7edc534
37fc0f3
5fdb08e
18c1434
7edc534
 
 
 
37fc0f3
 
 
 
 
 
5fdb08e
37fc0f3
 
5fdb08e
 
37fc0f3
 
 
5fdb08e
37fc0f3
 
 
 
5fdb08e
37fc0f3
 
5fdb08e
 
 
37fc0f3
 
 
5fdb08e
6e6b619
37fc0f3
 
 
97a4ebd
 
5fdb08e
 
 
37fc0f3
 
 
 
 
 
 
 
380c30d
6a04ddb
380c30d
6a04ddb
37fc0f3
 
ef08538
 
5fdb08e
 
 
ef08538
 
 
 
 
5fdb08e
 
 
37fc0f3
 
 
5fdb08e
37fc0f3
5fdb08e
 
37fc0f3
5fdb08e
b50f687
5fdb08e
37fc0f3
5fdb08e
 
 
b1878ce
37fc0f3
 
5fdb08e
 
6a04ddb
37fc0f3
 
97a4ebd
37fc0f3
 
 
 
 
 
 
97a4ebd
37fc0f3
 
 
5fdb08e
 
37fc0f3
8116b21
37fc0f3
 
 
 
 
5fdb08e
37fc0f3
 
5fdb08e
37fc0f3
97a4ebd
37fc0f3
 
97a4ebd
37fc0f3
97a4ebd
37fc0f3
 
5fdb08e
37fc0f3
 
5fdb08e
37fc0f3
 
 
aa4d259
37fc0f3
 
5fdb08e
37fc0f3
 
aa4d259
37fc0f3
 
 
 
 
 
 
5fdb08e
a60c64c
37fc0f3
 
 
 
5fdb08e
37fc0f3
5fdb08e
37fc0f3
 
 
 
 
 
 
b1878ce
264b8a3
5fdb08e
37fc0f3
 
5fdb08e
 
 
 
 
 
b1878ce
 
 
 
 
 
 
 
 
 
 
 
5fdb08e
 
b1878ce
14c2bbe
5fdb08e
14c2bbe
5fdb08e
 
14c2bbe
5fdb08e
14c2bbe
 
 
 
 
 
7edc534
 
5fdb08e
 
e6648e4
5fdb08e
 
 
 
14c2bbe
7edc534
14c2bbe
 
 
 
 
 
7edc534
14c2bbe
 
7edc534
5fdb08e
7edc534
 
 
 
5fdb08e
14c2bbe
 
7edc534
 
 
 
5fdb08e
 
 
e6648e4
5fdb08e
 
 
7edc534
 
 
5fdb08e
 
e6648e4
7edc534
 
 
 
 
5fdb08e
 
 
e6648e4
5fdb08e
e6648e4
 
 
 
7edc534
5fdb08e
7edc534
 
 
827425b
 
5fdb08e
 
 
 
 
14c2bbe
 
 
 
5fdb08e
 
 
 
14c2bbe
 
 
 
7edc534
14c2bbe
 
 
 
 
7edc534
14c2bbe
 
 
5fdb08e
 
 
14c2bbe
37fc0f3
2625be1
4a51e13
 
5fdb08e
 
 
4a51e13
2625be1
 
5fdb08e
2625be1
 
 
5fdb08e
2625be1
4a51e13
 
5fdb08e
 
 
 
4a51e13
5fdb08e
4a51e13
 
 
5fdb08e
 
 
 
 
 
 
4a51e13
 
 
5fdb08e
4a51e13
 
5fdb08e
4a51e13
 
 
5fdb08e
4a51e13
 
 
aa51e39
 
 
 
5fdb08e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa0ba59
8896389
 
97a4ebd
8896389
 
 
 
87cab7c
 
8896389
 
 
 
 
 
b50f687
5fdb08e
 
 
 
 
 
8896389
b50f687
8896389
 
5fdb08e
97a4ebd
8896389
 
bccbb15
 
 
 
 
 
 
 
 
 
 
 
aa0ba59
8896389
aa0ba59
14c2bbe
5fdb08e
 
 
 
 
 
 
14c2bbe
5fdb08e
 
 
 
 
 
aa0ba59
 
 
 
 
 
 
 
bccbb15
b50f687
5fdb08e
 
b50f687
5fdb08e
b50f687
8116b21
5fdb08e
 
37fc0f3
88dc796
 
 
5fdb08e
88dc796
5fdb08e
 
 
 
 
aa51e39
5fdb08e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88dc796
 
8f32dea
 
 
a1ba5e6
5fdb08e
 
 
a1ba5e6
 
5fdb08e
 
 
b50f687
5fdb08e
8060d45
88dc796
 
 
5fdb08e
97a4ebd
88dc796
bccbb15
14c2bbe
 
 
 
b1878ce
88dc796
5fdb08e
88dc796
e0f5d42
88dc796
 
 
5fdb08e
88dc796
a1ba5e6
88dc796
 
 
 
 
 
a1ba5e6
5fdb08e
88dc796
5fdb08e
 
 
 
 
 
 
 
 
88dc796
a7cb7a5
 
88dc796
5fdb08e
88dc796
 
b1878ce
 
380c30d
7bca7a2
b1878ce
 
a1ba5e6
5fdb08e
a1ba5e6
 
5fdb08e
a1ba5e6
 
 
380c30d
97a4ebd
a1ba5e6
 
 
 
97a4ebd
a1ba5e6
 
 
5fdb08e
2b98af7
5fdb08e
2b98af7
 
 
 
a1ba5e6
 
5fdb08e
88dc796
 
 
5fdb08e
 
88dc796
5fdb08e
88dc796
 
 
 
 
380c30d
97a4ebd
88dc796
 
 
 
5fdb08e
 
 
37fc0f3
88dc796
 
a1ba5e6
37fc0f3
88dc796
a1ba5e6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
#!/usr/bin/env python3
import sys
import numpy as np
import librosa
from functools import lru_cache
import time
import logging

import io
import soundfile as sf
import math

logger = logging.getLogger(__name__)


@lru_cache(10**6)
def load_audio(fname):
    a, _ = librosa.load(fname, sr=16000, dtype=np.float32)
    return a


def load_audio_chunk(fname, beg, end):
    audio = load_audio(fname)
    beg_s = int(beg * 16000)
    end_s = int(end * 16000)
    return audio[beg_s:end_s]


# Whisper backend


class ASRBase:

    sep = " "  # join transcribe words with this character (" " for whisper_timestamped,
    # "" for faster-whisper because it emits the spaces when neeeded)

    def __init__(
        self, lan, modelsize=None, cache_dir=None, model_dir=None, logfile=sys.stderr
    ):
        self.logfile = logfile

        self.transcribe_kargs = {}
        if lan == "auto":
            self.original_language = None
        else:
            self.original_language = lan

        self.model = self.load_model(modelsize, cache_dir, model_dir)

    def load_model(self, modelsize, cache_dir):
        raise NotImplemented("must be implemented in the child class")

    def transcribe(self, audio, init_prompt=""):
        raise NotImplemented("must be implemented in the child class")

    def use_vad(self):
        raise NotImplemented("must be implemented in the child class")


class WhisperTimestampedASR(ASRBase):
    """Uses whisper_timestamped library as the backend. Initially, we tested the code on this backend. It worked, but slower than faster-whisper.
    On the other hand, the installation for GPU could be easier.
    """

    sep = " "

    def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
        import whisper
        import whisper_timestamped
        from whisper_timestamped import transcribe_timestamped

        self.transcribe_timestamped = transcribe_timestamped
        if model_dir is not None:
            logger.debug("ignoring model_dir, not implemented")
        return whisper.load_model(modelsize, download_root=cache_dir)

    def transcribe(self, audio, init_prompt=""):
        result = self.transcribe_timestamped(
            self.model,
            audio,
            language=self.original_language,
            initial_prompt=init_prompt,
            verbose=None,
            condition_on_previous_text=True,
            **self.transcribe_kargs,
        )
        return result

    def ts_words(self, r):
        # return: transcribe result object to [(beg,end,"word1"), ...]
        o = []
        for s in r["segments"]:
            for w in s["words"]:
                t = (w["start"], w["end"], w["text"])
                o.append(t)
        return o

    def segments_end_ts(self, res):
        return [s["end"] for s in res["segments"]]

    def use_vad(self):
        self.transcribe_kargs["vad"] = True

    def set_translate_task(self):
        self.transcribe_kargs["task"] = "translate"


class FasterWhisperASR(ASRBase):
    """Uses faster-whisper library as the backend. Works much faster, appx 4-times (in offline mode). For GPU, it requires installation with a specific CUDNN version."""

    sep = ""

    def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
        from faster_whisper import WhisperModel

        #        logging.getLogger("faster_whisper").setLevel(logger.level)
        if model_dir is not None:
            logger.debug(
                f"Loading whisper model from model_dir {model_dir}. modelsize and cache_dir parameters are not used."
            )
            model_size_or_path = model_dir
        elif modelsize is not None:
            model_size_or_path = modelsize
        else:
            raise ValueError("modelsize or model_dir parameter must be set")

        # this worked fast and reliably on NVIDIA L40
        model = WhisperModel(
            model_size_or_path,
            device="cuda",
            compute_type="float16",
            download_root=cache_dir,
        )

        # or run on GPU with INT8
        # tested: the transcripts were different, probably worse than with FP16, and it was slightly (appx 20%) slower
        # model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")

        # or run on CPU with INT8
        # tested: works, but slow, appx 10-times than cuda FP16
        #        model = WhisperModel(modelsize, device="cpu", compute_type="int8") #, download_root="faster-disk-cache-dir/")
        return model

    def transcribe(self, audio, init_prompt=""):

        # tested: beam_size=5 is faster and better than 1 (on one 200 second document from En ESIC, min chunk 0.01)
        segments, info = self.model.transcribe(
            audio,
            language=self.original_language,
            initial_prompt=init_prompt,
            beam_size=5,
            word_timestamps=True,
            condition_on_previous_text=True,
            **self.transcribe_kargs,
        )
        # print(info)  # info contains language detection result

        return list(segments)

    def ts_words(self, segments):
        o = []
        for segment in segments:
            for word in segment.words:
                if segment.no_speech_prob > 0.9:
                    continue
                # not stripping the spaces -- should not be merged with them!
                w = word.word
                t = (word.start, word.end, w)
                o.append(t)
        return o

    def segments_end_ts(self, res):
        return [s.end for s in res]

    def use_vad(self):
        self.transcribe_kargs["vad_filter"] = True

    def set_translate_task(self):
        self.transcribe_kargs["task"] = "translate"


class MLXWhisper(ASRBase):
    """
    Uses MPX Whisper library as the backend, optimized for Apple Silicon.
    Models available: https://huggingface.co/collections/mlx-community/whisper-663256f9964fbb1177db93dc
    Significantly faster than faster-whisper (without CUDA) on Apple M1.
    """

    sep = " "

    def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
        """
        Loads the MLX-compatible Whisper model.

        Args:
            modelsize (str, optional): The size or name of the Whisper model to load.
                If provided, it will be translated to an MLX-compatible model path using the `translate_model_name` method.
                Example: "large-v3-turbo" -> "mlx-community/whisper-large-v3-turbo".
            cache_dir (str, optional): Path to the directory for caching models.
                **Note**: This is not supported by MLX Whisper and will be ignored.
            model_dir (str, optional): Direct path to a custom model directory.
                If specified, it overrides the `modelsize` parameter.
        """
        from mlx_whisper import transcribe

        if model_dir is not None:
            logger.debug(
                f"Loading whisper model from model_dir {model_dir}. modelsize parameter is not used."
            )
            model_size_or_path = model_dir
        elif modelsize is not None:
            model_size_or_path = self.translate_model_name(modelsize)
            logger.debug(
                f"Loading whisper model {modelsize}. You use mlx whisper, so {model_size_or_path} will be used."
            )

        self.model_size_or_path = model_size_or_path
        return transcribe

    def translate_model_name(self, model_name):
        """
        Translates a given model name to its corresponding MLX-compatible model path.

        Args:
            model_name (str): The name of the model to translate.

        Returns:
            str: The MLX-compatible model path.
        """
        # Dictionary mapping model names to MLX-compatible paths
        model_mapping = {
            "tiny.en": "mlx-community/whisper-tiny.en-mlx",
            "tiny": "mlx-community/whisper-tiny-mlx",
            "base.en": "mlx-community/whisper-base.en-mlx",
            "base": "mlx-community/whisper-base-mlx",
            "small.en": "mlx-community/whisper-small.en-mlx",
            "small": "mlx-community/whisper-small-mlx",
            "medium.en": "mlx-community/whisper-medium.en-mlx",
            "medium": "mlx-community/whisper-medium-mlx",
            "large-v1": "mlx-community/whisper-large-v1-mlx",
            "large-v2": "mlx-community/whisper-large-v2-mlx",
            "large-v3": "mlx-community/whisper-large-v3-mlx",
            "large-v3-turbo": "mlx-community/whisper-large-v3-turbo",
            "large": "mlx-community/whisper-large-mlx",
        }

        # Retrieve the corresponding MLX model path
        mlx_model_path = model_mapping.get(model_name)

        if mlx_model_path:
            return mlx_model_path
        else:
            raise ValueError(
                f"Model name '{model_name}' is not recognized or not supported."
            )

    def transcribe(self, audio, init_prompt=""):
        segments = self.model(
            audio,
            language=self.original_language,
            initial_prompt=init_prompt,
            word_timestamps=True,
            condition_on_previous_text=True,
            path_or_hf_repo=self.model_size_or_path,
            **self.transcribe_kargs,
        )
        return segments.get("segments", [])

    def ts_words(self, segments):
        """
        Extract timestamped words from transcription segments and skips words with high no-speech probability.
        """
        return [
            (word["start"], word["end"], word["word"])
            for segment in segments
            for word in segment.get("words", [])
            if segment.get("no_speech_prob", 0) <= 0.9
        ]

    def segments_end_ts(self, res):
        return [s["end"] for s in res]

    def use_vad(self):
        self.transcribe_kargs["vad_filter"] = True

    def set_translate_task(self):
        self.transcribe_kargs["task"] = "translate"


class OpenaiApiASR(ASRBase):
    """Uses OpenAI's Whisper API for audio transcription."""

    def __init__(self, lan=None, temperature=0, logfile=sys.stderr):
        self.logfile = logfile

        self.modelname = "whisper-1"
        self.original_language = (
            None if lan == "auto" else lan
        )  # ISO-639-1 language code
        self.response_format = "verbose_json"
        self.temperature = temperature

        self.load_model()

        self.use_vad_opt = False

        # reset the task in set_translate_task
        self.task = "transcribe"

    def load_model(self, *args, **kwargs):
        from openai import OpenAI

        self.client = OpenAI()

        self.transcribed_seconds = (
            0  # for logging how many seconds were processed by API, to know the cost
        )

    def ts_words(self, segments):
        no_speech_segments = []
        if self.use_vad_opt:
            for segment in segments.segments:
                # TODO: threshold can be set from outside
                if segment["no_speech_prob"] > 0.8:
                    no_speech_segments.append(
                        (segment.get("start"), segment.get("end"))
                    )

        o = []
        for word in segments.words:
            start = word.start
            end = word.end
            if any(s[0] <= start <= s[1] for s in no_speech_segments):
                # print("Skipping word", word.get("word"), "because it's in a no-speech segment")
                continue
            o.append((start, end, word.word))
        return o

    def segments_end_ts(self, res):
        return [s.end for s in res.words]

    def transcribe(self, audio_data, prompt=None, *args, **kwargs):
        # Write the audio data to a buffer
        buffer = io.BytesIO()
        buffer.name = "temp.wav"
        sf.write(buffer, audio_data, samplerate=16000, format="WAV", subtype="PCM_16")
        buffer.seek(0)  # Reset buffer's position to the beginning

        self.transcribed_seconds += math.ceil(
            len(audio_data) / 16000
        )  # it rounds up to the whole seconds

        params = {
            "model": self.modelname,
            "file": buffer,
            "response_format": self.response_format,
            "temperature": self.temperature,
            "timestamp_granularities": ["word", "segment"],
        }
        if self.task != "translate" and self.original_language:
            params["language"] = self.original_language
        if prompt:
            params["prompt"] = prompt

        if self.task == "translate":
            proc = self.client.audio.translations
        else:
            proc = self.client.audio.transcriptions

        # Process transcription/translation
        transcript = proc.create(**params)
        logger.debug(
            f"OpenAI API processed accumulated {self.transcribed_seconds} seconds"
        )

        return transcript

    def use_vad(self):
        self.use_vad_opt = True

    def set_translate_task(self):
        self.task = "translate"


class HypothesisBuffer:

    def __init__(self, logfile=sys.stderr):
        self.commited_in_buffer = []
        self.buffer = []
        self.new = []

        self.last_commited_time = 0
        self.last_commited_word = None

        self.logfile = logfile

    def insert(self, new, offset):
        # compare self.commited_in_buffer and new. It inserts only the words in new that extend the commited_in_buffer, it means they are roughly behind last_commited_time and new in content
        # the new tail is added to self.new

        new = [(a + offset, b + offset, t) for a, b, t in new]
        self.new = [(a, b, t) for a, b, t in new if a > self.last_commited_time - 0.1]

        if len(self.new) >= 1:
            a, b, t = self.new[0]
            if abs(a - self.last_commited_time) < 1:
                if self.commited_in_buffer:
                    # it's going to search for 1, 2, ..., 5 consecutive words (n-grams) that are identical in commited and new. If they are, they're dropped.
                    cn = len(self.commited_in_buffer)
                    nn = len(self.new)
                    for i in range(1, min(min(cn, nn), 5) + 1):  # 5 is the maximum
                        c = " ".join(
                            [self.commited_in_buffer[-j][2] for j in range(1, i + 1)][
                                ::-1
                            ]
                        )
                        tail = " ".join(self.new[j - 1][2] for j in range(1, i + 1))
                        if c == tail:
                            words = []
                            for j in range(i):
                                words.append(repr(self.new.pop(0)))
                            words_msg = " ".join(words)
                            logger.debug(f"removing last {i} words: {words_msg}")
                            break

    def flush(self):
        # returns commited chunk = the longest common prefix of 2 last inserts.

        commit = []
        while self.new:
            na, nb, nt = self.new[0]

            if len(self.buffer) == 0:
                break

            if nt == self.buffer[0][2]:
                commit.append((na, nb, nt))
                self.last_commited_word = nt
                self.last_commited_time = nb
                self.buffer.pop(0)
                self.new.pop(0)
            else:
                break
        self.buffer = self.new
        self.new = []
        self.commited_in_buffer.extend(commit)
        return commit

    def pop_commited(self, time):
        while self.commited_in_buffer and self.commited_in_buffer[0][1] <= time:
            self.commited_in_buffer.pop(0)

    def complete(self):
        return self.buffer


class OnlineASRProcessor:

    SAMPLING_RATE = 16000

    def __init__(
        self,
        asr,
        tokenize_method=None,
        buffer_trimming=("segment", 15),
        logfile=sys.stderr,
    ):
        """asr: WhisperASR object
        tokenize_method: sentence tokenizer function for the target language. Must be a callable and behaves like the one of MosesTokenizer. It can be None, if "segment" buffer trimming option is used, then tokenizer is not used at all.
        ("segment", 15)
        buffer_trimming: a pair of (option, seconds), where option is either "sentence" or "segment", and seconds is a number. Buffer is trimmed if it is longer than "seconds" threshold. Default is the most recommended option.
        logfile: where to store the log.
        """
        self.asr = asr
        self.tokenize = tokenize_method
        self.logfile = logfile

        self.init()

        self.buffer_trimming_way, self.buffer_trimming_sec = buffer_trimming

    def init(self, offset=None):
        """run this when starting or restarting processing"""
        self.audio_buffer = np.array([], dtype=np.float32)
        self.transcript_buffer = HypothesisBuffer(logfile=self.logfile)
        self.buffer_time_offset = 0
        if offset is not None:
            self.buffer_time_offset = offset
        self.transcript_buffer.last_commited_time = self.buffer_time_offset
        self.commited = []

    def insert_audio_chunk(self, audio):
        self.audio_buffer = np.append(self.audio_buffer, audio)

    def prompt(self):
        """Returns a tuple: (prompt, context), where "prompt" is a 200-character suffix of commited text that is inside of the scrolled away part of audio buffer.
        "context" is the commited text that is inside the audio buffer. It is transcribed again and skipped. It is returned only for debugging and logging reasons.
        """
        k = max(0, len(self.commited) - 1)
        while k > 0 and self.commited[k - 1][1] > self.buffer_time_offset:
            k -= 1

        p = self.commited[:k]
        p = [t for _, _, t in p]
        prompt = []
        l = 0
        while p and l < 200:  # 200 characters prompt size
            x = p.pop(-1)
            l += len(x) + 1
            prompt.append(x)
        non_prompt = self.commited[k:]
        return self.asr.sep.join(prompt[::-1]), self.asr.sep.join(
            t for _, _, t in non_prompt
        )

    def process_iter(self):
        """Runs on the current audio buffer.
        Returns: a tuple (beg_timestamp, end_timestamp, "text"), or (None, None, "").
        The non-emty text is confirmed (committed) partial transcript.
        """

        prompt, non_prompt = self.prompt()
        logger.debug(f"PROMPT: {prompt}")
        logger.debug(f"CONTEXT: {non_prompt}")
        logger.debug(
            f"transcribing {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f} seconds from {self.buffer_time_offset:2.2f}"
        )
        res = self.asr.transcribe(self.audio_buffer, init_prompt=prompt)

        # transform to [(beg,end,"word1"), ...]
        tsw = self.asr.ts_words(res)

        self.transcript_buffer.insert(tsw, self.buffer_time_offset)
        o = self.transcript_buffer.flush()
        self.commited.extend(o)
        completed = self.to_flush(o)
        logger.debug(f">>>>COMPLETE NOW: {completed[2]}")
        the_rest = self.to_flush(self.transcript_buffer.complete())
        logger.debug(f"INCOMPLETE: {the_rest[2]}")

        # there is a newly confirmed text

        if o and self.buffer_trimming_way == "sentence":  # trim the completed sentences
            if (
                len(self.audio_buffer) / self.SAMPLING_RATE > self.buffer_trimming_sec
            ):  # longer than this
                self.chunk_completed_sentence()

        if self.buffer_trimming_way == "segment":
            s = self.buffer_trimming_sec  # trim the completed segments longer than s,
        else:
            s = 30  # if the audio buffer is longer than 30s, trim it

        if len(self.audio_buffer) / self.SAMPLING_RATE > s:
            self.chunk_completed_segment(res)

            # alternative: on any word
            # l = self.buffer_time_offset + len(self.audio_buffer)/self.SAMPLING_RATE - 10
            # let's find commited word that is less
            # k = len(self.commited)-1
            # while k>0 and self.commited[k][1] > l:
            #    k -= 1
            # t = self.commited[k][1]
            logger.debug("chunking segment")
            # self.chunk_at(t)

        logger.debug(
            f"len of buffer now: {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f}"
        )
        return self.to_flush(o)

    def chunk_completed_sentence(self):
        if self.commited == []:
            return
        logger.debug("COMPLETED SENTENCE: ", [s[2] for s in self.commited])
        sents = self.words_to_sentences(self.commited)
        for s in sents:
            logger.debug(f"\t\tSENT: {s}")
        if len(sents) < 2:
            return
        while len(sents) > 2:
            sents.pop(0)
        # we will continue with audio processing at this timestamp
        chunk_at = sents[-2][1]

        logger.debug(f"--- sentence chunked at {chunk_at:2.2f}")
        self.chunk_at(chunk_at)

    def chunk_completed_segment(self, res):
        if self.commited == []:
            return

        ends = self.asr.segments_end_ts(res)

        t = self.commited[-1][1]

        if len(ends) > 1:

            e = ends[-2] + self.buffer_time_offset
            while len(ends) > 2 and e > t:
                ends.pop(-1)
                e = ends[-2] + self.buffer_time_offset
            if e <= t:
                logger.debug(f"--- segment chunked at {e:2.2f}")
                self.chunk_at(e)
            else:
                logger.debug(f"--- last segment not within commited area")
        else:
            logger.debug(f"--- not enough segments to chunk")

    def chunk_at(self, time):
        """trims the hypothesis and audio buffer at "time" """
        self.transcript_buffer.pop_commited(time)
        cut_seconds = time - self.buffer_time_offset
        self.audio_buffer = self.audio_buffer[int(cut_seconds * self.SAMPLING_RATE) :]
        self.buffer_time_offset = time

    def words_to_sentences(self, words):
        """Uses self.tokenize for sentence segmentation of words.
        Returns: [(beg,end,"sentence 1"),...]
        """

        cwords = [w for w in words]
        t = " ".join(o[2] for o in cwords)
        s = self.tokenize(t)
        out = []
        while s:
            beg = None
            end = None
            sent = s.pop(0).strip()
            fsent = sent
            while cwords:
                b, e, w = cwords.pop(0)
                w = w.strip()
                if beg is None and sent.startswith(w):
                    beg = b
                elif end is None and sent == w:
                    end = e
                    out.append((beg, end, fsent))
                    break
                sent = sent[len(w) :].strip()
        return out

    def finish(self):
        """Flush the incomplete text when the whole processing ends.
        Returns: the same format as self.process_iter()
        """
        o = self.transcript_buffer.complete()
        f = self.to_flush(o)
        logger.debug(f"last, noncommited: {f}")
        self.buffer_time_offset += len(self.audio_buffer) / 16000
        return f

    def to_flush(
        self,
        sents,
        sep=None,
        offset=0,
    ):
        # concatenates the timestamped words or sentences into one sequence that is flushed in one line
        # sents: [(beg1, end1, "sentence1"), ...] or [] if empty
        # return: (beg1,end-of-last-sentence,"concatenation of sentences") or (None, None, "") if empty
        if sep is None:
            sep = self.asr.sep
        t = sep.join(s[2] for s in sents)
        if len(sents) == 0:
            b = None
            e = None
        else:
            b = offset + sents[0][0]
            e = offset + sents[-1][1]
        return (b, e, t)


class VACOnlineASRProcessor(OnlineASRProcessor):
    """Wraps OnlineASRProcessor with VAC (Voice Activity Controller).

    It works the same way as OnlineASRProcessor: it receives chunks of audio (e.g. 0.04 seconds),
    it runs VAD and continuously detects whether there is speech or not.
    When it detects end of speech (non-voice for 500ms), it makes OnlineASRProcessor to end the utterance immediately.
    """

    def __init__(self, online_chunk_size, *a, **kw):
        self.online_chunk_size = online_chunk_size

        self.online = OnlineASRProcessor(*a, **kw)

        # VAC:
        import torch

        model, _ = torch.hub.load(repo_or_dir="snakers4/silero-vad", model="silero_vad")
        from silero_vad_iterator import FixedVADIterator

        self.vac = FixedVADIterator(
            model
        )  # we use the default options there: 500ms silence, 100ms padding, etc.

        self.logfile = self.online.logfile
        self.init()

    def init(self):
        self.online.init()
        self.vac.reset_states()
        self.current_online_chunk_buffer_size = 0

        self.is_currently_final = False

        self.status = None  # or "voice" or "nonvoice"
        self.audio_buffer = np.array([], dtype=np.float32)
        self.buffer_offset = 0  # in frames

    def clear_buffer(self):
        self.buffer_offset += len(self.audio_buffer)
        self.audio_buffer = np.array([], dtype=np.float32)

    def insert_audio_chunk(self, audio):
        res = self.vac(audio)
        self.audio_buffer = np.append(self.audio_buffer, audio)

        if res is not None:
            frame = list(res.values())[0] - self.buffer_offset
            if "start" in res and "end" not in res:
                self.status = "voice"
                send_audio = self.audio_buffer[frame:]
                self.online.init(
                    offset=(frame + self.buffer_offset) / self.SAMPLING_RATE
                )
                self.online.insert_audio_chunk(send_audio)
                self.current_online_chunk_buffer_size += len(send_audio)
                self.clear_buffer()
            elif "end" in res and "start" not in res:
                self.status = "nonvoice"
                send_audio = self.audio_buffer[:frame]
                self.online.insert_audio_chunk(send_audio)
                self.current_online_chunk_buffer_size += len(send_audio)
                self.is_currently_final = True
                self.clear_buffer()
            else:
                beg = res["start"] - self.buffer_offset
                end = res["end"] - self.buffer_offset
                self.status = "nonvoice"
                send_audio = self.audio_buffer[beg:end]
                self.online.init(offset=(beg + self.buffer_offset) / self.SAMPLING_RATE)
                self.online.insert_audio_chunk(send_audio)
                self.current_online_chunk_buffer_size += len(send_audio)
                self.is_currently_final = True
                self.clear_buffer()
        else:
            if self.status == "voice":
                self.online.insert_audio_chunk(self.audio_buffer)
                self.current_online_chunk_buffer_size += len(self.audio_buffer)
                self.clear_buffer()
            else:
                # We keep 1 second because VAD may later find start of voice in it.
                # But we trim it to prevent OOM.
                self.buffer_offset += max(
                    0, len(self.audio_buffer) - self.SAMPLING_RATE
                )
                self.audio_buffer = self.audio_buffer[-self.SAMPLING_RATE :]

    def process_iter(self):
        if self.is_currently_final:
            return self.finish()
        elif (
            self.current_online_chunk_buffer_size
            > self.SAMPLING_RATE * self.online_chunk_size
        ):
            self.current_online_chunk_buffer_size = 0
            ret = self.online.process_iter()
            return ret
        else:
            print("no online update, only VAD", self.status, file=self.logfile)
            return (None, None, "")

    def finish(self):
        ret = self.online.finish()
        self.current_online_chunk_buffer_size = 0
        self.is_currently_final = False
        return ret


WHISPER_LANG_CODES = "af,am,ar,as,az,ba,be,bg,bn,bo,br,bs,ca,cs,cy,da,de,el,en,es,et,eu,fa,fi,fo,fr,gl,gu,ha,haw,he,hi,hr,ht,hu,hy,id,is,it,ja,jw,ka,kk,km,kn,ko,la,lb,ln,lo,lt,lv,mg,mi,mk,ml,mn,mr,ms,mt,my,ne,nl,nn,no,oc,pa,pl,ps,pt,ro,ru,sa,sd,si,sk,sl,sn,so,sq,sr,su,sv,sw,ta,te,tg,th,tk,tl,tr,tt,uk,ur,uz,vi,yi,yo,zh".split(
    ","
)


def create_tokenizer(lan):
    """returns an object that has split function that works like the one of MosesTokenizer"""

    assert (
        lan in WHISPER_LANG_CODES
    ), "language must be Whisper's supported lang code: " + " ".join(WHISPER_LANG_CODES)

    if lan == "uk":
        import tokenize_uk

        class UkrainianTokenizer:
            def split(self, text):
                return tokenize_uk.tokenize_sents(text)

        return UkrainianTokenizer()

    # supported by fast-mosestokenizer
    if (
        lan
        in "as bn ca cs de el en es et fi fr ga gu hi hu is it kn lt lv ml mni mr nl or pa pl pt ro ru sk sl sv ta te yue zh".split()
    ):
        from mosestokenizer import MosesTokenizer

        return MosesTokenizer(lan)

    # the following languages are in Whisper, but not in wtpsplit:
    if (
        lan
        in "as ba bo br bs fo haw hr ht jw lb ln lo mi nn oc sa sd sn so su sw tk tl tt".split()
    ):
        logger.debug(
            f"{lan} code is not supported by wtpsplit. Going to use None lang_code option."
        )
        lan = None

    from wtpsplit import WtP

    # downloads the model from huggingface on the first use
    wtp = WtP("wtp-canine-s-12l-no-adapters")

    class WtPtok:
        def split(self, sent):
            return wtp.split(sent, lang_code=lan)

    return WtPtok()


def add_shared_args(parser):
    """shared args for simulation (this entry point) and server
    parser: argparse.ArgumentParser object
    """
    parser.add_argument(
        "--min-chunk-size",
        type=float,
        default=1.0,
        help="Minimum audio chunk size in seconds. It waits up to this time to do processing. If the processing takes shorter time, it waits, otherwise it processes the whole segment that was received by this time.",
    )
    parser.add_argument(
        "--model",
        type=str,
        default="large-v2",
        choices="tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large-v3,large,large-v3-turbo".split(
            ","
        ),
        help="Name size of the Whisper model to use (default: large-v2). The model is automatically downloaded from the model hub if not present in model cache dir.",
    )
    parser.add_argument(
        "--model_cache_dir",
        type=str,
        default=None,
        help="Overriding the default model cache dir where models downloaded from the hub are saved",
    )
    parser.add_argument(
        "--model_dir",
        type=str,
        default=None,
        help="Dir where Whisper model.bin and other files are saved. This option overrides --model and --model_cache_dir parameter.",
    )
    parser.add_argument(
        "--lan",
        "--language",
        type=str,
        default="auto",
        help="Source language code, e.g. en,de,cs, or 'auto' for language detection.",
    )
    parser.add_argument(
        "--task",
        type=str,
        default="transcribe",
        choices=["transcribe", "translate"],
        help="Transcribe or translate.",
    )
    parser.add_argument(
        "--backend",
        type=str,
        default="faster-whisper",
        choices=["faster-whisper", "whisper_timestamped", "mlx-whisper", "openai-api"],
        help="Load only this backend for Whisper processing.",
    )
    parser.add_argument(
        "--vac",
        action="store_true",
        default=False,
        help="Use VAC = voice activity controller. Recommended. Requires torch.",
    )
    parser.add_argument(
        "--vac-chunk-size", type=float, default=0.04, help="VAC sample size in seconds."
    )
    parser.add_argument(
        "--vad",
        action="store_true",
        default=False,
        help="Use VAD = voice activity detection, with the default parameters.",
    )
    parser.add_argument(
        "--buffer_trimming",
        type=str,
        default="segment",
        choices=["sentence", "segment"],
        help='Buffer trimming strategy -- trim completed sentences marked with punctuation mark and detected by sentence segmenter, or the completed segments returned by Whisper. Sentence segmenter must be installed for "sentence" option.',
    )
    parser.add_argument(
        "--buffer_trimming_sec",
        type=float,
        default=15,
        help="Buffer trimming length threshold in seconds. If buffer length is longer, trimming sentence/segment is triggered.",
    )
    parser.add_argument(
        "-l",
        "--log-level",
        dest="log_level",
        choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
        help="Set the log level",
        default="DEBUG",
    )

def backend_factory(args):
    backend = args.backend
    if backend == "openai-api":
        logger.debug("Using OpenAI API.")
        asr = OpenaiApiASR(lan=args.lan)
    else:
        if backend == "faster-whisper":
            asr_cls = FasterWhisperASR
        elif backend == "mlx-whisper":
            asr_cls = MLXWhisper
        else:
            asr_cls = WhisperTimestampedASR

        # Only for FasterWhisperASR and WhisperTimestampedASR
        size = args.model
        t = time.time()
        logger.info(f"Loading Whisper {size} model for {args.lan}...")
        asr = asr_cls(
            modelsize=size,
            lan=args.lan,
            cache_dir=args.model_cache_dir,
            model_dir=args.model_dir,
        )
        e = time.time()
        logger.info(f"done. It took {round(e-t,2)} seconds.")

    # Apply common configurations
    if getattr(args, "vad", False):  # Checks if VAD argument is present and True
        logger.info("Setting VAD filter")
        asr.use_vad()

    language = args.lan
    if args.task == "translate":
        asr.set_translate_task()
        tgt_language = "en"  # Whisper translates into English
    else:
        tgt_language = language  # Whisper transcribes in this language

    # Create the tokenizer
    if args.buffer_trimming == "sentence":
        tokenizer = create_tokenizer(tgt_language)
    else:
        tokenizer = None
    return asr, tokenizer

def online_factory(args, asr, tokenizer, logfile=sys.stderr):
    if args.vac:
        online = VACOnlineASRProcessor(
            args.min_chunk_size,
            asr,
            tokenizer,
            logfile=logfile,
            buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec),
        )
    else:
        online = OnlineASRProcessor(
            asr,
            tokenizer,
            logfile=logfile,
            buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec),
        )
    return online
  
def asr_factory(args, logfile=sys.stderr):
    """
    Creates and configures an ASR and ASR Online instance based on the specified backend and arguments.
    """
    asr, tokenizer = backend_factory(args)
    online = online_factory(args, asr, tokenizer, logfile=logfile)
    return asr, online

def set_logging(args, logger, other="_server"):
    logging.basicConfig(format="%(levelname)s\t%(message)s")  # format='%(name)s
    logger.setLevel(args.log_level)
    logging.getLogger("whisper_online" + other).setLevel(args.log_level)


#    logging.getLogger("whisper_online_server").setLevel(args.log_level)


if __name__ == "__main__":

    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "audio_path",
        type=str,
        help="Filename of 16kHz mono channel wav, on which live streaming is simulated.",
    )
    add_shared_args(parser)
    parser.add_argument(
        "--start_at",
        type=float,
        default=0.0,
        help="Start processing audio at this time.",
    )
    parser.add_argument(
        "--offline", action="store_true", default=False, help="Offline mode."
    )
    parser.add_argument(
        "--comp_unaware",
        action="store_true",
        default=False,
        help="Computationally unaware simulation.",
    )

    args = parser.parse_args()

    # reset to store stderr to different file stream, e.g. open(os.devnull,"w")
    logfile = sys.stderr

    if args.offline and args.comp_unaware:
        logger.error(
            "No or one option from --offline and --comp_unaware are available, not both. Exiting."
        )
        sys.exit(1)

    #    if args.log_level:
    #        logging.basicConfig(format='whisper-%(levelname)s:%(name)s: %(message)s',
    #                            level=getattr(logging, args.log_level))

    set_logging(args, logger)

    audio_path = args.audio_path

    SAMPLING_RATE = 16000
    duration = len(load_audio(audio_path)) / SAMPLING_RATE
    logger.info("Audio duration is: %2.2f seconds" % duration)

    asr, online = asr_factory(args, logfile=logfile)
    if args.vac:
        min_chunk = args.vac_chunk_size
    else:
        min_chunk = args.min_chunk_size

    # load the audio into the LRU cache before we start the timer
    a = load_audio_chunk(audio_path, 0, 1)

    # warm up the ASR because the very first transcribe takes much more time than the other
    asr.transcribe(a)

    beg = args.start_at
    start = time.time() - beg

    def output_transcript(o, now=None):
        # output format in stdout is like:
        # 4186.3606 0 1720 Takhle to je
        # - the first three words are:
        #    - emission time from beginning of processing, in milliseconds
        #    - beg and end timestamp of the text segment, as estimated by Whisper model. The timestamps are not accurate, but they're useful anyway
        # - the next words: segment transcript
        if now is None:
            now = time.time() - start
        if o[0] is not None:
            print(
                "%1.4f %1.0f %1.0f %s" % (now * 1000, o[0] * 1000, o[1] * 1000, o[2]),
                file=logfile,
                flush=True,
            )
            print(
                "%1.4f %1.0f %1.0f %s" % (now * 1000, o[0] * 1000, o[1] * 1000, o[2]),
                flush=True,
            )
        else:
            # No text, so no output
            pass

    if args.offline:  ## offline mode processing (for testing/debugging)
        a = load_audio(audio_path)
        online.insert_audio_chunk(a)
        try:
            o = online.process_iter()
        except AssertionError as e:
            logger.error(f"assertion error: {repr(e)}")
        else:
            output_transcript(o)
        now = None
    elif args.comp_unaware:  # computational unaware mode
        end = beg + min_chunk
        while True:
            a = load_audio_chunk(audio_path, beg, end)
            online.insert_audio_chunk(a)
            try:
                o = online.process_iter()
            except AssertionError as e:
                logger.error(f"assertion error: {repr(e)}")
                pass
            else:
                output_transcript(o, now=end)

            logger.debug(f"## last processed {end:.2f}s")

            if end >= duration:
                break

            beg = end

            if end + min_chunk > duration:
                end = duration
            else:
                end += min_chunk
        now = duration

    else:  # online = simultaneous mode
        end = 0
        while True:
            now = time.time() - start
            if now < end + min_chunk:
                time.sleep(min_chunk + end - now)
            end = time.time() - start
            a = load_audio_chunk(audio_path, beg, end)
            beg = end
            online.insert_audio_chunk(a)

            try:
                o = online.process_iter()
            except AssertionError as e:
                logger.error(f"assertion error: {e}")
                pass
            else:
                output_transcript(o)
            now = time.time() - start
            logger.debug(
                f"## last processed {end:.2f} s, now is {now:.2f}, the latency is {now-end:.2f}"
            )

            if end >= duration:
                break
        now = None

    o = online.finish()
    output_transcript(o, now=now)