Spaces:
Running
Running
File size: 7,698 Bytes
e0cf57f 4611e20 ab43e06 4611e20 1490129 5d7bc4a ecfc393 ab24187 ecfc393 4611e20 e0cf57f 2d599b6 e0cf57f 4611e20 eadc82d ecfc393 4611e20 eadc82d ecfc393 eadc82d 4611e20 e0cf57f 2d599b6 e0cf57f eadc82d 4611e20 e0cf57f eadc82d 4611e20 e0cf57f c7d17de e0cf57f ecfc393 eadc82d e0cf57f 65ede81 2d599b6 e0cf57f 65ede81 e0cf57f 65ede81 e0cf57f 4611e20 e0cf57f ecfc393 e0cf57f eadc82d e0cf57f eadc82d ac1b201 dc2c7e9 eadc82d 4611e20 e0cf57f 4611e20 e0cf57f 4611e20 e0cf57f 6c7560e e0cf57f 18f7e14 e0cf57f eadc82d e0cf57f 2d599b6 e0cf57f eadc82d e0cf57f eadc82d 0bc9984 e0cf57f 6c7560e e0cf57f 6c7560e e0cf57f 4611e20 2d599b6 e0cf57f ab24187 2d599b6 e0cf57f ab24187 e0cf57f ab24187 e0cf57f ab24187 e0cf57f 06db179 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# app.py
# Adapted to follow the logic from the provided Django api/views.py
import os
import cv2
import tempfile
import numpy as np
import uvicorn
import base64
from PIL import Image
from inference_sdk import InferenceHTTPClient
from fastapi import FastAPI, File, UploadFile
from fastapi.responses import JSONResponse
import tensorflow as tf
from huggingface_hub import hf_hub_download
import gradio as gr
# --- 1. Configuration and Model Loading ---
# Constants from the new Django logic
MAX_INFER_DIM = 1024
ENHANCED_SIZE = (224, 224)
# Roboflow and TF Model setup
ROBOFLOW_API_KEY = os.environ.get("ROBOFLOW_API_KEY")
CLIENT_FACE = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
CLIENT_EYES = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
CLIENT_IRIS = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
leuko_model = None
try:
model_path = hf_hub_download("skibi11/leukolook-eye-detector", "MobileNetV1_best.keras")
leuko_model = tf.keras.models.load_model(model_path)
print("--- LEUKOCORIA MODEL LOADED SUCCESSFULLY! ---")
except Exception as e:
print(f"--- FATAL ERROR: COULD NOT LOAD LEUKOCORIA MODEL: {e} ---")
raise RuntimeError(f"Could not load leukocoria model: {e}")
# --- 2. Helper Functions (Adapted from Django views.py) ---
def enhance_image_unsharp_mask(image, strength=0.5, radius=5):
"""Enhances image using unsharp masking."""
blur = cv2.GaussianBlur(image, (radius, radius), 0)
return cv2.addWeighted(image, 1.0 + strength, blur, -strength, 0)
def detect_faces_roboflow(image_path):
"""Detects faces using Roboflow."""
return CLIENT_FACE.infer(image_path, model_id="face-detector-v4liw/2").get("predictions", [])
def detect_eyes_roboflow(image_path):
"""
Detects eyes, resizing the image if necessary for inference,
then scales coordinates back to the original image size.
"""
raw_image = cv2.imread(image_path)
if raw_image is None:
return None, []
h, w = raw_image.shape[:2]
scale = min(1.0, MAX_INFER_DIM / max(h, w))
# Use a temporary file for inference if resizing is needed
if scale < 1.0:
small_image = cv2.resize(raw_image, (int(w*scale), int(h*scale)))
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
cv2.imwrite(tmp.name, small_image)
infer_path = tmp.name
else:
infer_path = image_path
try:
resp = CLIENT_EYES.infer(infer_path, model_id="eye-detection-kso3d/3")
finally:
# Clean up temp file if one was created
if scale < 1.0 and os.path.exists(infer_path):
os.remove(infer_path)
crops = []
for p in resp.get("predictions", []):
# Scale coordinates back to original image dimensions
cx, cy = p["x"] / scale, p["y"] / scale
bw, bh = p["width"] / scale, p["height"] / scale
# Crop from the original raw image
x1 = int(cx - bw / 2)
y1 = int(cy - bh / 2)
x2 = int(cx + bw / 2)
y2 = int(cy + bh / 2)
crop = raw_image[y1:y2, x1:x2]
if crop.size > 0:
crops.append({"coords": (x1, y1, x2, y2), "image": crop})
return raw_image, crops
def get_largest_iris_prediction(eye_crop):
"""Finds the largest iris in an eye crop."""
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
cv2.imwrite(tmp.name, eye_crop)
temp_path = tmp.name
try:
resp = CLIENT_IRIS.infer(temp_path, model_id="iris_120_set/7")
preds = resp.get("predictions", [])
return max(preds, key=lambda p: p["width"] * p["height"]) if preds else None
finally:
os.remove(temp_path)
def run_leukocoria_prediction(iris_crop):
"""Runs the loaded TensorFlow model on an iris crop."""
# The logic from views.py is now directly in the TF model call
enh = enhance_image_unsharp_mask(iris_crop)
enh_rs = cv2.resize(enh, ENHANCED_SIZE)
img_array = np.array(enh_rs) / 255.0
img_array = np.expand_dims(img_array, axis=0)
prediction = leuko_model.predict(img_array)
confidence = float(prediction[0][0])
has_leuko = confidence > 0.5
return has_leuko, confidence
def to_base64(image):
"""Converts a CV2 image to a base64 string."""
_, buffer = cv2.imencode(".jpg", image)
return "data:image/jpeg;base64," + base64.b64encode(buffer).decode()
# --- 3. FastAPI Application ---
app = FastAPI()
@app.post("/detect/")
async def full_detection_pipeline(image: UploadFile = File(...)):
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
tmp.write(await image.read())
temp_image_path = tmp.name
try:
# Step 1: Face Check
if not detect_faces_roboflow(temp_image_path):
return JSONResponse(status_code=200, content={"warnings": ["No face detected."]})
# Step 2: Eye Detection
raw_image, eye_crops = detect_eyes_roboflow(temp_image_path)
if raw_image is None:
return JSONResponse(status_code=400, content={"error": "Could not read uploaded image."})
if len(eye_crops) != 2:
return JSONResponse(status_code=200, content={
"analyzed_image": to_base64(raw_image),
"warnings": ["Exactly two eyes not detected."]
})
# Step 3: Process Eyes with NEW Labeling Logic
sorted_eyes = sorted(eye_crops, key=lambda e: e["coords"][0])
images_b64 = {}
flags = {}
# This new loop labels the left-most eye as "left" and right-most as "right"
for side, eye_info in zip(("left", "right"), sorted_eyes):
eye_img = eye_info["image"]
# Iris detection and Leukocoria prediction
pred = get_largest_iris_prediction(eye_img)
if pred:
cx, cy, w, h = pred["x"], pred["y"], pred["width"], pred["height"]
x1, y1 = int(cx - w / 2), int(cy - h / 2)
x2, y2 = int(cx + w / 2), int(cy + h / 2)
iris_crop = eye_img[y1:y2, x1:x2]
has_leuko, confidence = run_leukocoria_prediction(iris_crop)
flags[side] = has_leuko
else:
flags[side] = None
images_b64[side] = to_base64(eye_img)
# Step 4: Prepare and return the final response
return JSONResponse(status_code=200, content={
"analyzed_image": to_base64(raw_image),
"two_eyes": images_b64,
"leukocoria": flags,
"warnings": []
})
finally:
os.remove(temp_image_path)
# --- 4. Gradio UI (for simple testing) ---
def gradio_wrapper(image_array):
try:
pil_image = Image.fromarray(image_array)
with io.BytesIO() as buffer:
pil_image.save(buffer, format="JPEG")
files = {'image': ('image.jpg', buffer.getvalue(), 'image/jpeg')}
response = requests.post("http://127.0.0.1:7860/detect/", files=files)
return response.json()
except Exception as e:
return {"error": str(e)}
gradio_ui = gr.Interface(
fn=gradio_wrapper,
inputs=gr.Image(type="numpy", label="Upload an eye image"),
outputs=gr.JSON(label="Analysis Results"),
title="LeukoLook Eye Detector",
description="Demonstration of the full detection pipeline."
)
app = gr.mount_gradio_app(app, gradio_ui, path="/")
# --- 5. Run Server ---
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860) |