Spaces:
Sleeping
Sleeping
File size: 7,126 Bytes
a3e0475 ffbccbb 1fd6803 fc5f1c7 d6f5773 fc5f1c7 a3e0475 5c095c6 fc42bd4 d282502 5c095c6 e3d3d36 5c095c6 1fd6803 5c095c6 1fd6803 391ca85 e3d3d36 94ac9e7 5c095c6 fc5f1c7 5c095c6 a3e0475 d282502 5c095c6 a3e0475 94ac9e7 d282502 94ac9e7 5c095c6 94ac9e7 e3d3d36 073538f fc5f1c7 5c095c6 fc5f1c7 d282502 e3d3d36 fc5f1c7 e3d3d36 d282502 e3d3d36 fc5f1c7 d282502 fc5f1c7 d282502 1fd6803 d282502 fc5f1c7 5c095c6 e3d3d36 d282502 e3d3d36 fc5f1c7 e3d3d36 d282502 ffbccbb d4c5e46 fc5f1c7 5c095c6 2a239ae 5c095c6 fc5f1c7 5c095c6 e3d3d36 5c095c6 ad1c148 d4c5e46 1fd6803 e3d3d36 2a239ae ad0b8d6 fc42bd4 d282502 ffbccbb ad0b8d6 2a239ae e3d3d36 2a239ae ad1c148 5c095c6 fdf3b40 2a239ae e3d3d36 4b25132 f6bb49b e3d3d36 fc5f1c7 391ca85 e3d3d36 391ca85 e3d3d36 0b6b797 5c095c6 2a239ae 391ca85 5c095c6 d282502 5c095c6 1fd6803 f543f0b ad0b8d6 5c095c6 ad0b8d6 5c095c6 ad0b8d6 5c095c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import os
import re
import random
import requests
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
# Must be the first Streamlit command!
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π")
# --- Initialize Session State Variables ---
if "chat_history" not in st.session_state:
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
if "response_ready" not in st.session_state:
st.session_state.response_ready = False
if "follow_up" not in st.session_state:
st.session_state.follow_up = ""
# --- Set Up Model & API Functions ---
model_id = "mistralai/Mistral-7B-Instruct-v0.3"
sentiment_analyzer = pipeline(
"sentiment-analysis",
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
revision="714eb0f"
)
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.7):
return HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token=os.getenv("HF_TOKEN"),
task="text-generation"
)
def get_nasa_apod():
url = f"https://api.nasa.gov/planetary/apod?api_key={os.getenv('NASA_API_KEY')}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
else:
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now. Please try again later."
def analyze_sentiment(user_text):
result = sentiment_analyzer(user_text)[0]
return result['label']
def predict_action(user_text):
if "nasa" in user_text.lower() or "space" in user_text.lower():
return "nasa_info"
return "general_query"
def generate_follow_up(user_text):
"""
Generates one concise, friendly follow-up question related to the user's input.
The prompt instructs the model to output a single question without extra commentary.
"""
prompt_text = (
f"Generate one concise, friendly follow-up question related to the topic of the user's question: '{user_text}'. "
"The output should be only the question, with no extra text."
)
hf = get_llm_hf_inference(max_new_tokens=60, temperature=0.9)
output = hf.invoke(input=prompt_text).strip()
# If the output is too short or empty, return a default fallback question.
if len(output) < 10:
return "Would you like to explore this topic further?"
# Clean the output from any extraneous quotes.
follow_up = output.strip(' "\'')
return follow_up
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
"""
Generates HAL's response with a detailed explanation and a follow-up question.
Style instructions (e.g. "in the voice of a physicist") are appended if present.
"""
sentiment = analyze_sentiment(user_text)
action = predict_action(user_text)
# Extract style instruction if present.
style_instruction = ""
lower_text = user_text.lower()
if "in the voice of" in lower_text or "speaking as" in lower_text:
match = re.search(r"(in the voice of|speaking as)(.*)", lower_text)
if match:
style_instruction = match.group(2).strip().capitalize()
style_instruction = f" Please respond in the voice of {style_instruction}."
if action == "nasa_info":
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
response = f"**{nasa_title}**\n\n{nasa_explanation}"
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, nasa_url
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
filtered_history = ""
for message in chat_history:
if message["role"] == "assistant" and message["content"].strip() == "Hello! How can I assist you today?":
continue
filtered_history += f"{message['role']}: {message['content']}\n"
style_clause = style_instruction if style_instruction else ""
prompt = PromptTemplate.from_template(
(
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
"User: {user_text}.\n [/INST]\n"
"AI: Please provide a detailed, in-depth answer in a friendly, conversational tone. "
"Begin with a phrase like 'Certainly!', 'Of course!', or 'Great question!'." + style_clause +
"\nHAL:"
)
)
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
response = response.split("HAL:")[-1].strip()
if not response:
response = "Certainly, here is an in-depth explanation: [Fallback explanation]."
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
if sentiment == "NEGATIVE" and not user_text.strip().endswith("?"):
response = "I'm sorry you're feeling this way. I'm here to help. What can I do to assist you further?"
chat_history[-1]['content'] = response
follow_up = generate_follow_up(user_text)
chat_history.append({'role': 'assistant', 'content': follow_up})
return response, follow_up, chat_history, None
# --- Chat UI ---
st.title("π HAL - Your NASA AI Assistant")
st.markdown("π *Ask me about space, NASA, and beyond!*")
if st.sidebar.button("Reset Chat"):
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
st.session_state.response_ready = False
st.session_state.follow_up = ""
st.experimental_rerun()
# Render the chat history.
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
if message["role"] == "user":
st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
user_input = st.chat_input("Type your message here...")
if user_input:
response, follow_up, st.session_state.chat_history, image_url = get_response(
system_message="You are a helpful AI assistant.",
user_text=user_input,
chat_history=st.session_state.chat_history
)
if image_url:
st.image(image_url, caption="NASA Image of the Day")
st.session_state.follow_up = follow_up
st.session_state.response_ready = True
|