File size: 6,573 Bytes
a3e0475
ffbccbb
fc5f1c7
e653ea8
d6f5773
fc5f1c7
a3e0475
 
5c095c6
f009e2d
e653ea8
 
 
f009e2d
fe8e64b
546ff54
ab8074b
e653ea8
546ff54
ab8074b
e653ea8
 
546ff54
ab8074b
e653ea8
b256ef1
5c095c6
f009e2d
5c095c6
594a593
e653ea8
 
391ca85
f009e2d
 
5c095c6
a3e0475
 
 
258dcf5
e653ea8
f009e2d
a3e0475
 
e653ea8
 
 
 
 
 
 
 
 
 
 
 
 
f009e2d
e653ea8
 
 
 
 
 
 
 
 
 
 
 
f009e2d
e653ea8
 
 
f009e2d
 
e653ea8
f009e2d
 
e653ea8
f009e2d
 
e653ea8
 
f009e2d
e653ea8
 
 
f009e2d
74bfc30
f009e2d
74bfc30
 
f009e2d
 
 
74bfc30
594a593
f77e366
594a593
f009e2d
e653ea8
f009e2d
594a593
 
 
 
f009e2d
594a593
 
e653ea8
 
 
 
 
f009e2d
 
 
74bfc30
f009e2d
594a593
e653ea8
594a593
 
304d58b
 
 
885b84d
f009e2d
304d58b
 
 
 
885b84d
304d58b
885b84d
 
 
 
304d58b
 
5b0e575
f009e2d
 
 
 
304d58b
f009e2d
47a03de
594a593
b54b055
f009e2d
 
 
 
 
e653ea8
 
f009e2d
e653ea8
f009e2d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import re
import requests
import torch
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
from langdetect import detect  # Ensure this package is installed

# βœ… Check for GPU or Default to CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"βœ… Using device: {device}")  # Debugging info

# βœ… Environment Variables
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
    raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.")

NASA_API_KEY = os.getenv("NASA_API_KEY")
if NASA_API_KEY is None:
    raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.")

# βœ… Set Up Streamlit
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")

# βœ… Initialize Session State Variables (Ensuring Chat History Persists)
if "chat_history" not in st.session_state:
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
if "response_ready" not in st.session_state:
    st.session_state.response_ready = False

# βœ… Initialize Hugging Face Model (Explicitly Set to CPU/GPU)
def get_llm_hf_inference(model_id="meta-llama/Llama-2-7b-chat-hf", max_new_tokens=800, temperature=0.8):
    return HuggingFaceEndpoint(
        repo_id=model_id,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        token=HF_TOKEN,
        task="text-generation",
        device=-1 if device == "cpu" else 0  # βœ… Force CPU (-1) or GPU (0)
    )

# βœ… NASA API Function
def get_nasa_apod():
    url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
    response = requests.get(url)
    if response.status_code == 200:
        data = response.json()
        return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
    return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now."

# βœ… Sentiment Analysis (Now Uses Explicit Device)
sentiment_analyzer = pipeline(
    "sentiment-analysis",
    model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
    device=-1 if device == "cpu" else 0  # βœ… Force CPU (-1) or GPU (0)
)

def analyze_sentiment(user_text):
    result = sentiment_analyzer(user_text)[0]
    return result['label']

# βœ… Intent Detection
def predict_action(user_text):
    if "NASA" in user_text.lower() or "space" in user_text.lower():
        return "nasa_info"
    return "general_query"

# βœ… Ensure English Responses
def ensure_english(text):
    try:
        detected_lang = detect(text)
        if detected_lang != "en":
            return "⚠️ Sorry, I only respond in English. Can you rephrase your question?"
    except:
        return "⚠️ Language detection failed. Please ask your question again."
    return text

# βœ… Main Response Function (Follow-Up Question Removed)
def get_response(system_message, chat_history, user_text, max_new_tokens=800):
    action = predict_action(user_text)

    # βœ… Handle NASA-Specific Queries
    if action == "nasa_info":
        nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
        response = f"**{nasa_title}**\n\n{nasa_explanation}"
        chat_history.append({'role': 'user', 'content': user_text})
        chat_history.append({'role': 'assistant', 'content': response})
        return response, chat_history, nasa_url

    # βœ… Invoke Hugging Face Model
    hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)

    filtered_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history)

    prompt = PromptTemplate.from_template(
        "[INST] You are a helpful AI assistant.\n\nCurrent Conversation:\n{chat_history}\n\n"
        "User: {user_text}.\n [/INST]\n"
        "AI: Provide a detailed explanation with depth. Use a conversational tone. "
        "🚨 Answer **only in English**."
        "Ensure a friendly, engaging tone."
        "\nHAL:"
    )

    chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
    response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
    response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip()

    response = ensure_english(response)

    if not response:
        response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?"

    # βœ… Preserve conversation history
    st.session_state.chat_history.append({'role': 'user', 'content': user_text})
    st.session_state.chat_history.append({'role': 'assistant', 'content': response})

    return response, chat_history

# βœ… Streamlit UI
st.title("πŸš€ HAL - NASA AI Assistant")

# βœ… Justify all chatbot responses
st.markdown("""
    <style>
    .user-msg, .assistant-msg {
        padding: 11px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
        text-align: justify;
    }
    .user-msg { background-color: #696969; color: white; }
    .assistant-msg { background-color: #333333; color: white; }
    .container { display: flex; flex-direction: column; align-items: flex-start; }
    @media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } }
    </style>
""", unsafe_allow_html=True)

# βœ… Reset Chat Button
if st.sidebar.button("Reset Chat"):
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
    st.session_state.response_ready = False

# βœ… Chat UI
user_input = st.chat_input("Type your message here...")

if user_input:
    response, st.session_state.chat_history = get_response(
        system_message="You are a helpful AI assistant.",
        user_text=user_input,
        chat_history=st.session_state.chat_history
    )

    if response:
        st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)

# βœ… Display chat history
st.markdown("<div class='container'>", unsafe_allow_html=True)
for message in st.session_state.chat_history:
    if message["role"] == "user":
        st.markdown(f"<div class='user-msg'><strong>You:</strong> {message['content']}</div>", unsafe_allow_html=True)
    else:
        st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {message['content']}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)