Spaces:
Sleeping
Sleeping
File size: 7,385 Bytes
a3e0475 ffbccbb fc5f1c7 fe8e64b d6f5773 fc5f1c7 a3e0475 5c095c6 546ff54 fc42bd4 fe8e64b 546ff54 ab8074b 594a593 546ff54 ab8074b 594a593 546ff54 ab8074b 546ff54 b256ef1 5c095c6 fe8e64b 5c095c6 594a593 5c095c6 1fd6803 5c095c6 1fd6803 391ca85 fe8e64b 5c095c6 a3e0475 258dcf5 fe8e64b a3e0475 546ff54 94ac9e7 258dcf5 94ac9e7 5c095c6 546ff54 fe8e64b 594a593 fe8e64b 594a593 073538f 258dcf5 546ff54 ac55e19 47a03de 546ff54 ac55e19 fe8e64b 594a593 fe8e64b 594a593 fe8e64b 594a593 fe8e64b c567c97 594a593 792148f 594a593 792148f fe8e64b 594a593 fe8e64b 594a593 fe8e64b 594a593 792148f fe8e64b 594a593 fe8e64b 594a593 47a03de 594a593 b54b055 b744871 594a593 fe8e64b 594a593 b744871 47a03de fe8e64b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import os
import re
import requests
import torch
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
from langdetect import detect # Ensure this package is installed
# β
Check for GPU or Default to CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"β
Using device: {device}") # Debugging info
# β
Environment Variables
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.")
NASA_API_KEY = os.getenv("NASA_API_KEY")
if NASA_API_KEY is None:
raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.")
# β
Set Up Streamlit
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="π")
# β
Initialize Session State Variables (Ensuring Chat History Persists)
if "chat_history" not in st.session_state:
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
if "response_ready" not in st.session_state:
st.session_state.response_ready = False
if "follow_up" not in st.session_state:
st.session_state.follow_up = ""
# β
Initialize Hugging Face Model (Explicitly Set to CPU/GPU)
def get_llm_hf_inference(model_id="mistralai/Mistral-7B-Instruct-v0.3", max_new_tokens=512, temperature=0.7):
return HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token=HF_TOKEN,
task="text-generation",
device=-1 if device == "cpu" else 0 # β
Force CPU (-1) or GPU (0)
)
# β
NASA API Function
def get_nasa_apod():
url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now."
# β
Sentiment Analysis (Now Uses Explicit Device)
sentiment_analyzer = pipeline(
"sentiment-analysis",
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
device=-1 if device == "cpu" else 0 # β
Force CPU (-1) or GPU (0)
)
def analyze_sentiment(user_text):
result = sentiment_analyzer(user_text)[0]
return result['label']
# β
Intent Detection
def predict_action(user_text):
if "NASA" in user_text.lower() or "space" in user_text.lower():
return "nasa_info"
return "general_query"
# β
Ensure English Responses
def ensure_english(text):
try:
detected_lang = detect(text)
if detected_lang != "en":
return "β οΈ Sorry, I only respond in English. Can you rephrase your question?"
except:
return "β οΈ Language detection failed. Please ask your question again."
return text
# β
Follow-Up Question Generation
def generate_follow_up(user_text):
prompt_text = (
f"Given the user's question: '{user_text}', generate a SHORT follow-up question "
"suggesting a related topic or asking if they need more details."
)
hf = get_llm_hf_inference(max_new_tokens=40, temperature=0.8)
output = hf.invoke(input=prompt_text).strip()
cleaned_output = re.sub(r"```|''|\"", "", output).strip()
return cleaned_output if cleaned_output else "Would you like to explore another related topic or ask about something else?"
# β
Main Response Function
def get_response(system_message, chat_history, user_text, max_new_tokens=512):
action = predict_action(user_text)
# β
Handle NASA-Specific Queries
if action == "nasa_info":
nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
response = f"**{nasa_title}**\n\n{nasa_explanation}"
follow_up = generate_follow_up(user_text)
chat_history.extend([
{'role': 'user', 'content': user_text},
{'role': 'assistant', 'content': response},
{'role': 'assistant', 'content': follow_up}
])
return response, follow_up, chat_history, nasa_url
# β
Invoke Hugging Face Model
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)
filtered_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history)
prompt = PromptTemplate.from_template(
"[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
"User: {user_text}.\n [/INST]\n"
"AI: Provide a detailed explanation. Use a conversational tone. "
"π¨ Answer **only in English**."
"\nHAL:"
)
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip()
response = ensure_english(response)
if not response:
response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?"
follow_up = generate_follow_up(user_text)
chat_history.extend([
{'role': 'user', 'content': user_text},
{'role': 'assistant', 'content': response},
{'role': 'assistant', 'content': follow_up}
])
return response, follow_up, chat_history, None
# β
Streamlit UI
st.title("π HAL - NASA AI Assistant")
# β
Justify all chatbot responses
st.markdown("""
<style>
.user-msg, .assistant-msg {
padding: 10px;
border-radius: 10px;
margin-bottom: 5px;
width: fit-content;
max-width: 80%;
text-align: justify;
}
.user-msg { background-color: #696969; color: white; }
.assistant-msg { background-color: #333333; color: white; }
.container { display: flex; flex-direction: column; align-items: flex-start; }
@media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } }
</style>
""", unsafe_allow_html=True)
# β
Reset Chat Button
if st.sidebar.button("Reset Chat"):
st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
st.session_state.response_ready = False
st.session_state.follow_up = ""
# β
Chat UI
user_input = st.chat_input("Type your message here...")
if user_input:
response, follow_up, st.session_state.chat_history, image_url = get_response(
system_message="You are a helpful AI assistant.",
user_text=user_input,
chat_history=st.session_state.chat_history
)
if response:
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)
if follow_up:
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {follow_up}</div>", unsafe_allow_html=True)
if image_url:
st.image(image_url, caption="NASA Image of the Day")
st.session_state.response_ready = True
if st.session_state.response_ready and st.session_state.follow_up:
st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {st.session_state.follow_up}</div>", unsafe_allow_html=True)
st.session_state.response_ready = False
|