File size: 7,385 Bytes
a3e0475
ffbccbb
fc5f1c7
fe8e64b
d6f5773
fc5f1c7
a3e0475
 
5c095c6
546ff54
fc42bd4
fe8e64b
 
 
 
546ff54
ab8074b
594a593
546ff54
ab8074b
594a593
 
546ff54
ab8074b
546ff54
b256ef1
5c095c6
fe8e64b
5c095c6
594a593
5c095c6
1fd6803
5c095c6
1fd6803
391ca85
fe8e64b
 
5c095c6
a3e0475
 
 
258dcf5
fe8e64b
 
a3e0475
 
546ff54
94ac9e7
258dcf5
94ac9e7
 
 
5c095c6
546ff54
 
fe8e64b
594a593
 
fe8e64b
 
594a593
073538f
258dcf5
 
 
 
546ff54
ac55e19
47a03de
546ff54
ac55e19
 
fe8e64b
 
 
 
 
 
 
 
 
 
594a593
 
 
 
fe8e64b
594a593
fe8e64b
594a593
 
fe8e64b
c567c97
 
 
 
594a593
 
792148f
594a593
 
 
 
 
792148f
fe8e64b
 
 
 
 
594a593
 
fe8e64b
594a593
 
 
 
 
 
 
fe8e64b
594a593
 
 
 
 
 
 
 
 
 
 
 
 
792148f
fe8e64b
 
 
 
 
 
594a593
 
 
 
 
 
fe8e64b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
594a593
 
 
 
 
 
47a03de
 
594a593
b54b055
b744871
 
 
 
 
594a593
fe8e64b
 
594a593
b744871
 
 
 
 
 
47a03de
fe8e64b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import re
import requests
import torch
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from transformers import pipeline
from langdetect import detect  # Ensure this package is installed

# βœ… Check for GPU or Default to CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"βœ… Using device: {device}")  # Debugging info

# βœ… Environment Variables
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
    raise ValueError("HF_TOKEN is not set. Please add it to your environment variables.")

NASA_API_KEY = os.getenv("NASA_API_KEY")
if NASA_API_KEY is None:
    raise ValueError("NASA_API_KEY is not set. Please add it to your environment variables.")

# βœ… Set Up Streamlit
st.set_page_config(page_title="HAL - NASA ChatBot", page_icon="πŸš€")

# βœ… Initialize Session State Variables (Ensuring Chat History Persists)
if "chat_history" not in st.session_state:
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
if "response_ready" not in st.session_state:
    st.session_state.response_ready = False
if "follow_up" not in st.session_state:
    st.session_state.follow_up = ""

# βœ… Initialize Hugging Face Model (Explicitly Set to CPU/GPU)
def get_llm_hf_inference(model_id="mistralai/Mistral-7B-Instruct-v0.3", max_new_tokens=512, temperature=0.7):
    return HuggingFaceEndpoint(
        repo_id=model_id,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        token=HF_TOKEN,
        task="text-generation",
        device=-1 if device == "cpu" else 0  # βœ… Force CPU (-1) or GPU (0)
    )

# βœ… NASA API Function
def get_nasa_apod():
    url = f"https://api.nasa.gov/planetary/apod?api_key={NASA_API_KEY}"
    response = requests.get(url)
    if response.status_code == 200:
        data = response.json()
        return data.get("url", ""), data.get("title", ""), data.get("explanation", "")
    return "", "NASA Data Unavailable", "I couldn't fetch data from NASA right now."

# βœ… Sentiment Analysis (Now Uses Explicit Device)
sentiment_analyzer = pipeline(
    "sentiment-analysis",
    model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
    device=-1 if device == "cpu" else 0  # βœ… Force CPU (-1) or GPU (0)
)

def analyze_sentiment(user_text):
    result = sentiment_analyzer(user_text)[0]
    return result['label']

# βœ… Intent Detection
def predict_action(user_text):
    if "NASA" in user_text.lower() or "space" in user_text.lower():
        return "nasa_info"
    return "general_query"

# βœ… Ensure English Responses
def ensure_english(text):
    try:
        detected_lang = detect(text)
        if detected_lang != "en":
            return "⚠️ Sorry, I only respond in English. Can you rephrase your question?"
    except:
        return "⚠️ Language detection failed. Please ask your question again."
    return text

# βœ… Follow-Up Question Generation
def generate_follow_up(user_text):
    prompt_text = (
        f"Given the user's question: '{user_text}', generate a SHORT follow-up question "
        "suggesting a related topic or asking if they need more details."
    )

    hf = get_llm_hf_inference(max_new_tokens=40, temperature=0.8)
    output = hf.invoke(input=prompt_text).strip()
    
    cleaned_output = re.sub(r"```|''|\"", "", output).strip()

    return cleaned_output if cleaned_output else "Would you like to explore another related topic or ask about something else?"

# βœ… Main Response Function
def get_response(system_message, chat_history, user_text, max_new_tokens=512):
    action = predict_action(user_text)

    # βœ… Handle NASA-Specific Queries
    if action == "nasa_info":
        nasa_url, nasa_title, nasa_explanation = get_nasa_apod()
        response = f"**{nasa_title}**\n\n{nasa_explanation}"
        follow_up = generate_follow_up(user_text)
        chat_history.extend([
            {'role': 'user', 'content': user_text},
            {'role': 'assistant', 'content': response},
            {'role': 'assistant', 'content': follow_up}
        ])
        return response, follow_up, chat_history, nasa_url

    # βœ… Invoke Hugging Face Model
    hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.9)

    filtered_history = "\n".join(f"{msg['role']}: {msg['content']}" for msg in chat_history)

    prompt = PromptTemplate.from_template(
        "[INST] {system_message}\n\nCurrent Conversation:\n{chat_history}\n\n"
        "User: {user_text}.\n [/INST]\n"
        "AI: Provide a detailed explanation. Use a conversational tone. "
        "🚨 Answer **only in English**."
        "\nHAL:"
    )

    chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
    response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=filtered_history))
    response = response.split("HAL:")[-1].strip() if "HAL:" in response else response.strip()

    response = ensure_english(response)

    if not response:
        response = "I'm sorry, but I couldn't generate a response. Can you rephrase your question?"

    follow_up = generate_follow_up(user_text)

    chat_history.extend([
        {'role': 'user', 'content': user_text},
        {'role': 'assistant', 'content': response},
        {'role': 'assistant', 'content': follow_up}
    ])

    return response, follow_up, chat_history, None

# βœ… Streamlit UI
st.title("πŸš€ HAL - NASA AI Assistant")

# βœ… Justify all chatbot responses
st.markdown("""
    <style>
    .user-msg, .assistant-msg {
        padding: 10px;
        border-radius: 10px;
        margin-bottom: 5px;
        width: fit-content;
        max-width: 80%;
        text-align: justify;
    }
    .user-msg { background-color: #696969; color: white; }
    .assistant-msg { background-color: #333333; color: white; }
    .container { display: flex; flex-direction: column; align-items: flex-start; }
    @media (max-width: 600px) { .user-msg, .assistant-msg { font-size: 16px; max-width: 100%; } }
    </style>
""", unsafe_allow_html=True)

# βœ… Reset Chat Button
if st.sidebar.button("Reset Chat"):
    st.session_state.chat_history = [{"role": "assistant", "content": "Hello! How can I assist you today?"}]
    st.session_state.response_ready = False
    st.session_state.follow_up = ""

# βœ… Chat UI
user_input = st.chat_input("Type your message here...")

if user_input:
    response, follow_up, st.session_state.chat_history, image_url = get_response(
        system_message="You are a helpful AI assistant.",
        user_text=user_input,
        chat_history=st.session_state.chat_history
    )

    if response:
        st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {response}</div>", unsafe_allow_html=True)

    if follow_up:
        st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {follow_up}</div>", unsafe_allow_html=True)

    if image_url:
        st.image(image_url, caption="NASA Image of the Day")

    st.session_state.response_ready = True

if st.session_state.response_ready and st.session_state.follow_up:
    st.markdown(f"<div class='assistant-msg'><strong>HAL:</strong> {st.session_state.follow_up}</div>", unsafe_allow_html=True)
    st.session_state.response_ready = False