File size: 11,463 Bytes
d6e219c
f1948f2
 
2f6ac5d
e032990
b54664e
6153eb8
0ff864f
cb6b46c
 
 
 
e185e86
2f6ac5d
cb6b46c
 
 
 
 
 
 
 
 
 
2f6ac5d
 
cb6b46c
 
 
e032990
 
a9d4250
e185e86
cb6b46c
 
 
e185e86
 
 
cb6b46c
 
 
 
 
 
 
 
 
 
 
e185e86
 
2f6ac5d
cb6b46c
 
 
 
 
2f6ac5d
aeed86a
e185e86
cb6b46c
 
 
 
 
 
 
 
 
 
 
e185e86
 
d33c30b
cb6b46c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d33c30b
 
 
cb6b46c
 
 
 
 
 
 
 
 
 
d33c30b
1e3558a
cb6b46c
1e3558a
2f6ac5d
1e3558a
cb6b46c
 
 
1e3558a
 
21fd350
cb6b46c
 
 
 
 
 
 
 
 
6153eb8
1e3558a
cb6b46c
 
 
 
 
 
 
 
 
 
 
 
 
1e3558a
4472a1d
cb6b46c
 
 
 
 
 
4472a1d
ec5f81e
cb6b46c
 
 
 
43095bd
e032990
cb6b46c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b883fe8
e185e86
cb6b46c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec5f81e
 
cb6b46c
 
 
e032990
 
cb6b46c
 
 
e032990
a28ef35
ab8c96f
cb6b46c
 
 
 
 
ab8c96f
4292d1b
cb6b46c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import gradio as gr
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import RobertaForSequenceClassification, RobertaTokenizer
from motif_tagging import detect_motifs
import re

— Sentiment Model: T5-based Emotion Classifier —

sentiment_tokenizer = AutoTokenizer.from_pretrained(“mrm8488/t5-base-finetuned-emotion”)
sentiment_model = AutoModelForSeq2SeqLM.from_pretrained(“mrm8488/t5-base-finetuned-emotion”)

EMOTION_TO_SENTIMENT = {
“joy”: “supportive”,
“love”: “supportive”,
“surprise”: “supportive”,
“neutral”: “supportive”,
“sadness”: “undermining”,
“anger”: “undermining”,
“fear”: “undermining”,
“disgust”: “undermining”,
“shame”: “undermining”,
“guilt”: “undermining”
}

— Abuse Detection Model —

model_name = “SamanthaStorm/autotrain-jlpi4-mllvp”
model = RobertaForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
tokenizer = RobertaTokenizer.from_pretrained(model_name, trust_remote_code=True)

LABELS = [
“blame shifting”, “contradictory statements”, “control”, “dismissiveness”,
“gaslighting”, “guilt tripping”, “insults”, “obscure language”,
“projection”, “recovery phase”, “threat”
]

THRESHOLDS = {
“blame shifting”: 0.3,
“contradictory statements”: 0.32,
“control”: 0.48,
“dismissiveness”: 0.45,
“gaslighting”: 0.30,
“guilt tripping”: 0.20,
“insults”: 0.34,
“obscure language”: 0.25,
“projection”: 0.35,
“recovery phase”: 0.25,
“threat”: 0.25
}

PATTERN_WEIGHTS = {
“gaslighting”: 1.3,
“control”: 1.2,
“dismissiveness”: 0.8,
“blame shifting”: 0.8,
“contradictory statements”: 0.75
}

EXPLANATIONS = {
“blame shifting”: “Blame-shifting is when one person redirects responsibility onto someone else to avoid accountability.”,
“contradictory statements”: “Contradictory statements confuse the listener by flipping positions or denying previous claims.”,
“control”: “Control restricts another person’s autonomy through coercion, manipulation, or threats.”,
“dismissiveness”: “Dismissiveness is belittling or disregarding another person’s feelings, needs, or opinions.”,
“gaslighting”: “Gaslighting involves making someone question their own reality, memory, or perceptions.”,
“guilt tripping”: “Guilt-tripping uses guilt to manipulate someone’s actions or decisions.”,
“insults”: “Insults are derogatory or demeaning remarks meant to shame, belittle, or hurt someone.”,
“obscure language”: “Obscure language manipulates through complexity, vagueness, or superiority to confuse the other person.”,
“projection”: “Projection accuses someone else of the very behaviors or intentions the speaker is exhibiting.”,
“recovery phase”: “Recovery phase statements attempt to soothe or reset tension without acknowledging harm or change.”,
“threat”: “Threats use fear of harm (physical, emotional, or relational) to control or intimidate someone.”
}

RISK_SNIPPETS = {
“low”: (
“🟢 Risk Level: Low”,
“The language patterns here do not strongly indicate abuse.”,
“Continue to check in with yourself and notice how you feel in response to repeated patterns.”
),
“moderate”: (
“⚠️ Risk Level: Moderate to High”,
“This language includes control, guilt, or reversal tactics.”,
“These patterns often lead to emotional confusion and reduced self-trust. Document these messages or talk with someone safe.”
),
“high”: (
“🛑 Risk Level: High”,
“Language includes threats or coercive control, which are strong indicators of escalation.”,
“Consider creating a safety plan or contacting a support line. Trust your sense of unease.”
)
}

def generate_risk_snippet(abuse_score, top_label):
if abuse_score >= 85:
risk_level = “high”
elif abuse_score >= 60:
risk_level = “moderate”
else:
risk_level = “low”
title, summary, advice = RISK_SNIPPETS[risk_level]
return f”\n\n{title}\n{summary} (Pattern: {top_label})\n💡 {advice}”

— DARVO Detection —

DARVO_PATTERNS = {
“blame shifting”, “projection”, “dismissiveness”, “guilt tripping”, “contradictory statements”
}

DARVO_MOTIFS = [
“i guess i’m the bad guy”, “after everything i’ve done”, “you always twist everything”,
“so now it’s all my fault”, “i’m the villain”, “i’m always wrong”, “you never listen”,
“you’re attacking me”, “i’m done trying”, “i’m the only one who cares”
]

def detect_contradiction(message):
contradiction_phrases = [
(r”\b(i love you).{0,15}(i hate you|you ruin everything)”, re.IGNORECASE),
(r”\b(i’m sorry).{0,15}(but you|if you hadn’t)”, re.IGNORECASE),
(r”\b(i’m trying).{0,15}(you never|why do you)”, re.IGNORECASE),
(r”\b(do what you want).{0,15}(you’ll regret it|i always give everything)”, re.IGNORECASE),
(r”\b(i don’t care).{0,15}(you never think of me)”, re.IGNORECASE),
(r”\b(i guess i’m just).{0,15}(the bad guy|worthless|never enough)”, re.IGNORECASE),
]
return any(re.search(pattern, message, flags) for pattern, flags in contradiction_phrases)

def calculate_darvo_score(patterns, sentiment_before, sentiment_after, motifs_found, contradiction_flag=False):
pattern_hits = len([p.lower() for p in patterns if p.lower() in DARVO_PATTERNS])
pattern_score = pattern_hits / len(DARVO_PATTERNS)
sentiment_shift_score = max(0.0, sentiment_after - sentiment_before)
motif_hits = len([m.lower() for m in motifs_found if m.lower() in DARVO_MOTIFS])
motif_score = motif_hits / len(DARVO_MOTIFS)
contradiction_score = 1.0 if contradiction_flag else 0.0
darvo_score = (
0.3 * pattern_score +
0.3 * sentiment_shift_score +
0.25 * motif_score +
0.15 * contradiction_score
)
return round(min(darvo_score, 1.0), 3)

def custom_sentiment(text):
input_ids = sentiment_tokenizer(f”emotion: {text}”, return_tensors=“pt”).input_ids
with torch.no_grad():
outputs = sentiment_model.generate(input_ids)
emotion = sentiment_tokenizer.decode(outputs[0], skip_special_tokens=True).strip().lower()
sentiment = EMOTION_TO_SENTIMENT.get(emotion, “undermining”)
return {“label”: sentiment, “emotion”: emotion}

def calculate_abuse_level(scores, thresholds, motif_hits=None, flag_multiplier=1.0):
weighted_scores = [score * PATTERN_WEIGHTS.get(label, 1.0) for label, score in zip(LABELS, scores) if score > thresholds[label]]
base_score = round(np.mean(weighted_scores) * 100, 2) if weighted_scores else 0.0
base_score *= flag_multiplier
return min(base_score, 100.0)

def analyze_single_message(text, thresholds, motif_flags):
motif_hits, matched_phrases = detect_motifs(text)
sentiment = custom_sentiment(text)
sentiment_score = 0.5 if sentiment[“label”] == “undermining” else 0.0
print(f”Detected emotion: {sentiment[‘emotion’]} → sentiment: {sentiment[‘label’]}”)

adjusted_thresholds = {k: v * 0.8 for k, v in thresholds.items()} if sentiment["label"] == "undermining" else thresholds.copy()
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
    outputs = model(**inputs)
scores = torch.sigmoid(outputs.logits.squeeze(0)).numpy()
threshold_labels = [label for label, score in zip(LABELS, scores) if score > adjusted_thresholds[label]]
phrase_labels = [label for label, _ in matched_phrases]
pattern_labels_used = list(set(threshold_labels + phrase_labels))
abuse_level = calculate_abuse_level(scores, adjusted_thresholds, motif_hits)
top_patterns = sorted([(label, score) for label, score in zip(LABELS, scores)], key=lambda x: x[1], reverse=True)[:2]
motif_phrases = [text for _, text in matched_phrases]
contradiction_flag = detect_contradiction(text)
darvo_score = calculate_darvo_score(pattern_labels_used, 0.0, sentiment_score, motif_phrases, contradiction_flag)
return abuse_level, pattern_labels_used, top_patterns, darvo_score, sentiment

def analyze_composite(msg1, msg2, msg3, flags):
thresholds = THRESHOLDS.copy()
messages = [msg1, msg2, msg3]
active_messages = [m for m in messages if m.strip()]
if not active_messages:
return “Please enter at least one message.”

results = []
sentiment_labels = []
sentiment_score_total = 0.0
for m in active_messages:
    result = analyze_single_message(m, thresholds, flags)
    print(f"Message: {m}")
    print(f"Sentiment result: {result[4]}")
    results.append(result)
    sentiment_labels.append(result[4]["label"])
    if result[4]["label"] == "undermining":
        sentiment_score_total += 0.5

undermining_count = sentiment_labels.count("undermining")
supportive_count = sentiment_labels.count("supportive")
if undermining_count > supportive_count:
    thresholds = {k: v * 0.9 for k, v in thresholds.items()}
elif undermining_count and supportive_count:
    thresholds = {k: v * 0.95 for k, v in thresholds.items()}
    print("⚖️ Detected conflicting sentiment across messages.")

abuse_scores = [r[0] for r in results]
darvo_scores = [r[3] for r in results]
average_darvo = round(sum(darvo_scores) / len(darvo_scores), 3)
base_score = sum(abuse_scores) / len(abuse_scores)
label_sets = [[label for label, _ in r[2]] for r in results]
label_counts = {label: sum(label in s for s in label_sets) for label in set().union(*label_sets)}
top_label = max(label_counts.items(), key=lambda x: x[1])
top_explanation = EXPLANATIONS.get(top_label[0], "")
flag_weights = {
    "They've threatened harm": 6,
    "They isolate me": 5,
    "I’ve changed my behavior out of fear": 4,
    "They monitor/follow me": 4,
    "I feel unsafe when alone with them": 6
}
flag_boost = sum(flag_weights.get(f, 3) for f in flags) / len(active_messages)
composite_score = min(base_score + flag_boost, 100)
if len(active_messages) == 1:
    composite_score *= 0.85
elif len(active_messages) == 2:
    composite_score *= 0.93
composite_score = round(min(composite_score, 100), 2)

result = f"These messages show a pattern of **{top_label[0]}** and are estimated to be {composite_score}% likely abusive."
if top_explanation:
    result += f"\n• {top_explanation}"
if average_darvo > 0.25:
    darvo_descriptor = "moderate" if average_darvo < 0.65 else "high"
    result += f"\n\nDARVO Score: {average_darvo} → This indicates a **{darvo_descriptor} likelihood** of narrative reversal (DARVO), where the speaker may be denying, attacking, or reversing blame."
result += generate_risk_snippet(composite_score, top_label[0])
if undermining_count and supportive_count:
    result += "\n\n⚖️ These messages contain **conflicting emotional tones** — this may indicate mixed signals, ambivalence, or a push-pull dynamic. Use caution interpreting any one message alone."
return result

textbox_inputs = [
gr.Textbox(label=“Message 1”),
gr.Textbox(label=“Message 2”),
gr.Textbox(label=“Message 3”)
]

checkboxes = gr.CheckboxGroup(label=“Contextual Flags”, choices=[
“They’ve threatened harm”, “They isolate me”, “I’ve changed my behavior out of fear”,
“They monitor/follow me”, “I feel unsafe when alone with them”
])

iface = gr.Interface(
fn=analyze_composite,
inputs=textbox_inputs + [checkboxes],
outputs=gr.Textbox(label=“Results”),
title=“Abuse Pattern Detector (Multi-Message)”,
allow_flagging=“manual”
)

if name == “main”:
iface.launch()