File size: 5,728 Bytes
0318caf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27992f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f02b1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
744d8dc
4f02b1c
 
27992f6
4f02b1c
 
27992f6
4f02b1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cac8f0f
 
d35c879
b307974
0318caf
4b46c96
417a23b
0d53d23
dda8f2a
d141979
25606a9
8f6ec4b
744d8dc
0b60445
378a7ec
 
27992f6
4f02b1c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# import os
# import gradio as gr
# from langchain.chat_models import ChatOpenAI
# from langchain.prompts import PromptTemplate
# from langchain.chains import LLMChain
# from langchain.memory import ConversationBufferMemory

# # Set OpenAI API Key
# OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')

# # Define the template for the chatbot's response
# template = """You are a helpful assistant to answer all user queries.
# {chat_history}
# User: {user_message}
# Chatbot:"""

# # Define the prompt template
# prompt = PromptTemplate(
#     input_variables=["chat_history", "user_message"], 
#     template=template
# )

# # Initialize conversation memory
# memory = ConversationBufferMemory(memory_key="chat_history")

# # Define the LLM chain with the ChatOpenAI model and conversation memory
# llm_chain = LLMChain(
#     llm=ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"),  # Use 'model' instead of 'model_name'
#     prompt=prompt,
#     verbose=True,
#     memory=memory,
# )

# # Function to get chatbot response
# def get_text_response(user_message, history):
#     response = llm_chain.predict(user_message=user_message)
#     return response

# # Create a Gradio chat interface
# demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")

# if __name__ == "__main__":
#     demo.launch()

# import os
# import gradio as gr
# from langchain.chat_models import ChatOpenAI
# from langchain.schema import AIMessage, HumanMessage

# # Set OpenAI API Key
# os.environ["OPENAI_API_KEY"] = "sk-3_mJiR5z9Q3XN-D33cgrAIYGffmMvHfu5Je1U0CW1ZT3BlbkFJA2vfSvDqZAVUyHo2JIcU91XPiAq424OSS8ci29tWMA"  # Replace with your key

# # Initialize the ChatOpenAI model
# llm = ChatOpenAI(temperature=1.0, model="gpt-3.5-turbo-0613")

# # Function to predict response
# def get_text_response(message, history=None):
#     # Ensure history is a list
#     if history is None:
#         history = []
    
#     # Convert the Gradio history format to LangChain message format
#     history_langchain_format = []
#     for human, ai in history:
#         history_langchain_format.append(HumanMessage(content=human))
#         history_langchain_format.append(AIMessage(content=ai))
    
#     # Add the new user message to the history
#     history_langchain_format.append(HumanMessage(content=message))

#     # Get the model's response
#     gpt_response = llm(history_langchain_format)

#     # Append AI response to history
#     history.append((message, gpt_response.content))

#     # Return the response and updated history
#     return gpt_response.content, history

# # Create a Gradio chat interface
# demo = gr.ChatInterface(
#     fn=get_text_response, 
#     inputs=["text", "state"], 
#     outputs=["text", "state"]
# )

# if __name__ == "__main__":
#     demo.launch()

# import os  # Import the os module
# import time
# import gradio as gr
# from langchain_community.chat_models import ChatOpenAI  # Updated import based on deprecation warning
# from langchain.schema import AIMessage, HumanMessage
# import openai

# # Set your OpenAI API key
# os.environ["OPENAI_API_KEY"] = "sk-3_mJiR5z9Q3XN-D33cgrAIYGffmMvHfu5Je1U0CW1ZT3BlbkFJA2vfSvDqZAVUyHo2JIcU91XPiAq424OSS8ci29tWMA"  # Replace with your OpenAI key

# # Initialize ChatOpenAI
# llm = ChatOpenAI(temperature=1.0, model='gpt-3.5-turbo-0613')

# def predict(message, history):
#     # Reformat history for LangChain
#     history_langchain_format = []
#     for human, ai in history:
#         history_langchain_format.append(HumanMessage(content=human))
#         history_langchain_format.append(AIMessage(content=ai))
    
#     # Add latest human message
#     history_langchain_format.append(HumanMessage(content=message))
    
#     # Get response from the model
#     gpt_response = llm(history_langchain_format)
    
#     # Return response
#     return gpt_response.content

# # Using ChatInterface to create a chat-style UI
# demo = gr.ChatInterface(fn=predict, type="messages")
# if __name__ == "__main__":
#     demo.launch()
import gradio as gr
from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()