Spaces:
Sleeping
Sleeping
File size: 5,728 Bytes
0318caf 27992f6 4f02b1c 744d8dc 4f02b1c 27992f6 4f02b1c 27992f6 4f02b1c cac8f0f d35c879 b307974 0318caf 4b46c96 417a23b 0d53d23 dda8f2a d141979 25606a9 8f6ec4b 744d8dc 0b60445 378a7ec 27992f6 4f02b1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
# import os
# import gradio as gr
# from langchain.chat_models import ChatOpenAI
# from langchain.prompts import PromptTemplate
# from langchain.chains import LLMChain
# from langchain.memory import ConversationBufferMemory
# # Set OpenAI API Key
# OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
# # Define the template for the chatbot's response
# template = """You are a helpful assistant to answer all user queries.
# {chat_history}
# User: {user_message}
# Chatbot:"""
# # Define the prompt template
# prompt = PromptTemplate(
# input_variables=["chat_history", "user_message"],
# template=template
# )
# # Initialize conversation memory
# memory = ConversationBufferMemory(memory_key="chat_history")
# # Define the LLM chain with the ChatOpenAI model and conversation memory
# llm_chain = LLMChain(
# llm=ChatOpenAI(temperature=0.5, model="gpt-3.5-turbo"), # Use 'model' instead of 'model_name'
# prompt=prompt,
# verbose=True,
# memory=memory,
# )
# # Function to get chatbot response
# def get_text_response(user_message, history):
# response = llm_chain.predict(user_message=user_message)
# return response
# # Create a Gradio chat interface
# demo = gr.Interface(fn=get_text_response, inputs="text", outputs="text")
# if __name__ == "__main__":
# demo.launch()
# import os
# import gradio as gr
# from langchain.chat_models import ChatOpenAI
# from langchain.schema import AIMessage, HumanMessage
# # Set OpenAI API Key
# os.environ["OPENAI_API_KEY"] = "sk-3_mJiR5z9Q3XN-D33cgrAIYGffmMvHfu5Je1U0CW1ZT3BlbkFJA2vfSvDqZAVUyHo2JIcU91XPiAq424OSS8ci29tWMA" # Replace with your key
# # Initialize the ChatOpenAI model
# llm = ChatOpenAI(temperature=1.0, model="gpt-3.5-turbo-0613")
# # Function to predict response
# def get_text_response(message, history=None):
# # Ensure history is a list
# if history is None:
# history = []
# # Convert the Gradio history format to LangChain message format
# history_langchain_format = []
# for human, ai in history:
# history_langchain_format.append(HumanMessage(content=human))
# history_langchain_format.append(AIMessage(content=ai))
# # Add the new user message to the history
# history_langchain_format.append(HumanMessage(content=message))
# # Get the model's response
# gpt_response = llm(history_langchain_format)
# # Append AI response to history
# history.append((message, gpt_response.content))
# # Return the response and updated history
# return gpt_response.content, history
# # Create a Gradio chat interface
# demo = gr.ChatInterface(
# fn=get_text_response,
# inputs=["text", "state"],
# outputs=["text", "state"]
# )
# if __name__ == "__main__":
# demo.launch()
# import os # Import the os module
# import time
# import gradio as gr
# from langchain_community.chat_models import ChatOpenAI # Updated import based on deprecation warning
# from langchain.schema import AIMessage, HumanMessage
# import openai
# # Set your OpenAI API key
# os.environ["OPENAI_API_KEY"] = "sk-3_mJiR5z9Q3XN-D33cgrAIYGffmMvHfu5Je1U0CW1ZT3BlbkFJA2vfSvDqZAVUyHo2JIcU91XPiAq424OSS8ci29tWMA" # Replace with your OpenAI key
# # Initialize ChatOpenAI
# llm = ChatOpenAI(temperature=1.0, model='gpt-3.5-turbo-0613')
# def predict(message, history):
# # Reformat history for LangChain
# history_langchain_format = []
# for human, ai in history:
# history_langchain_format.append(HumanMessage(content=human))
# history_langchain_format.append(AIMessage(content=ai))
# # Add latest human message
# history_langchain_format.append(HumanMessage(content=message))
# # Get response from the model
# gpt_response = llm(history_langchain_format)
# # Return response
# return gpt_response.content
# # Using ChatInterface to create a chat-style UI
# demo = gr.ChatInterface(fn=predict, type="messages")
# if __name__ == "__main__":
# demo.launch()
import gradio as gr
from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
|