File size: 50,243 Bytes
9392036
 
ed8f744
913507e
ce05869
6b1f66d
757102e
5498932
b79fb2d
 
af68571
6b1f66d
ce05869
1280fd8
f5e34b2
71eb50f
f24148c
71eb50f
9392036
1280fd8
9392036
2ee3fae
9392036
 
 
 
1280fd8
 
913507e
574aa10
f24148c
6ee3759
574aa10
6ee3759
 
 
757102e
 
 
 
574aa10
6ee3759
f872421
 
529a2e6
89ffe36
529a2e6
 
 
 
 
 
 
 
09537d6
 
6b1f66d
757102e
6b1f66d
757102e
 
 
 
09537d6
757102e
09537d6
757102e
6b1f66d
757102e
 
 
 
09537d6
 
 
 
 
757102e
89ffe36
c300990
 
 
 
 
 
 
09537d6
1af1b88
c300990
 
1af1b88
 
 
6b1f66d
a448d0f
 
6b1f66d
a448d0f
 
 
09537d6
a448d0f
1af1b88
a448d0f
 
6b1f66d
a448d0f
 
 
09537d6
 
 
 
 
757102e
89ffe36
 
 
f872421
a448d0f
09537d6
71eb50f
 
 
a448d0f
 
09537d6
 
a448d0f
 
 
 
09537d6
 
 
 
a448d0f
 
71eb50f
 
 
 
 
 
 
 
b79fb2d
 
 
 
 
 
 
 
 
 
 
 
 
 
71eb50f
b79fb2d
71eb50f
 
 
 
 
 
b79fb2d
 
 
 
 
 
 
 
 
 
 
a448d0f
 
 
 
71eb50f
a448d0f
 
71eb50f
b79fb2d
 
a448d0f
 
71eb50f
a448d0f
 
71eb50f
b79fb2d
 
a448d0f
 
b79fb2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a448d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09537d6
a448d0f
2f05ff8
09537d6
 
a448d0f
 
 
09537d6
 
a448d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09537d6
 
 
 
 
a448d0f
 
 
 
09537d6
 
6b1f66d
ed8f744
6ee3759
 
 
 
 
ed8f744
 
 
6b1f66d
6ee3759
 
6b1f66d
6ee3759
ed8f744
 
6b1f66d
6ee3759
6b1f66d
ed8f744
6b1f66d
 
 
 
 
 
ed8f744
f872421
757102e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b1f66d
 
 
ed8f744
6b1f66d
d966a8e
757102e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09537d6
 
 
 
 
 
6b1f66d
f541667
6b1f66d
ed8f744
6b1f66d
ed8f744
71eb50f
ed8f744
 
 
b79fb2d
89ffe36
71eb50f
89ffe36
f5e34b2
a448d0f
 
4279043
89ffe36
3139646
71eb50f
3139646
71eb50f
 
 
0598719
 
 
 
 
b79fb2d
 
 
 
71eb50f
 
b79fb2d
f872421
ed8f744
b79fb2d
ce05869
 
b79fb2d
 
ce05869
 
 
 
 
 
 
a448d0f
 
 
 
 
 
 
 
 
 
 
ce05869
a448d0f
 
 
 
 
2f05ff8
b79fb2d
ce05869
 
 
 
 
 
 
 
 
 
 
a448d0f
 
 
ce05869
 
 
 
 
b79fb2d
ce05869
 
b79fb2d
ce05869
2f05ff8
ce05869
 
 
 
 
3139646
a448d0f
 
 
 
 
 
0598719
71eb50f
 
 
a448d0f
3139646
 
 
 
 
a448d0f
b79fb2d
a448d0f
 
 
 
 
 
 
 
 
ce05869
a448d0f
 
 
 
 
 
b79fb2d
a448d0f
 
 
 
 
 
ce05869
a448d0f
 
 
 
f541667
a685ec6
f24148c
09537d6
529a2e6
 
f24148c
 
 
 
 
 
 
529a2e6
f24148c
f541667
529a2e6
a448d0f
 
a685ec6
 
c300990
a685ec6
 
 
 
 
a448d0f
a685ec6
a448d0f
6b1f66d
a448d0f
 
 
 
 
 
 
c300990
a448d0f
b79fb2d
c300990
b79fb2d
 
a448d0f
 
 
 
b79fb2d
f541667
a448d0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b79fb2d
a448d0f
 
 
 
 
 
 
 
0598719
 
71eb50f
0598719
71eb50f
0598719
 
 
b79fb2d
 
 
 
71eb50f
c300990
3139646
 
 
 
c300990
3139646
 
a685ec6
3139646
 
 
a685ec6
c300990
 
 
 
 
 
 
 
 
3139646
 
 
 
 
 
 
0598719
a448d0f
89ffe36
 
d966a8e
ed8f744
f541667
71eb50f
09537d6
 
 
 
 
 
71eb50f
 
 
 
 
 
 
 
 
 
6b1f66d
ed8f744
 
71eb50f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b1f66d
ed8f744
71eb50f
 
 
 
 
5498932
71eb50f
c300990
af68571
 
 
6b1f66d
af68571
69db70c
af68571
08f9513
 
 
af68571
 
c300990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eff2e30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f05ff8
eff2e30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f05ff8
 
eff2e30
 
 
 
2f05ff8
eff2e30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c300990
 
89ffe36
 
 
 
69db70c
89ffe36
 
69db70c
89ffe36
6ee3759
 
c300990
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
import streamlit as st
import pandas as pd
import numpy as np
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource, DataTable, TableColumn, CustomJS, Select, Button, HoverTool
from bokeh.layouts import column
from bokeh.palettes import Reds9, Blues9, Oranges9, Purples9, Greys9, BuGn9, Greens9
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE, trustworthiness
from sklearn.metrics import pairwise_distances
import io
import ot
from sklearn.linear_model import LinearRegression

N_COMPONENTS = 2
TSNE_NEIGHBOURS = 150
# WEIGHT_FACTOR = 0.05

TOOLTIPS = """
<div>
    <div>
        <img src="@img{safe}" style="width:128px; height:auto; float: left; margin: 0px 15px 15px 0px;" alt="@img" border="2"></img>
    </div>
    <div>
        <span style="font-size: 17px; font-weight: bold;">@label</span>
    </div>
</div>
"""

def config_style():
    # st.set_page_config(layout="wide")
    st.markdown("""
        <style>
        .main-title { font-size: 50px; color: #4CAF50; text-align: center; }
        .sub-title { font-size: 30px; color: #555; }
        .custom-text { font-size: 18px; line-height: 1.5; }
        .bk-legend {
            max-height: 200px;
            overflow-y: auto;
        }
        </style>
    """, unsafe_allow_html=True)
    st.markdown('<h1 class="main-title">Merit Embeddings 馃帓馃搩馃弳</h1>', unsafe_allow_html=True)

def load_embeddings(model, version, embedding_prefix, weight_factor):
    if model == "Donut":
        df_real = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_secret_all_{weight_factor}embeddings.csv")
        df_par = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-paragraph-degradation-seq_{weight_factor}embeddings.csv")
        df_line = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-line-degradation-seq_{weight_factor}embeddings.csv")
        df_seq  = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-seq_{weight_factor}embeddings.csv")
        df_rot  = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-rotation-degradation-seq_{weight_factor}embeddings.csv")
        df_zoom = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-zoom-degradation-seq_{weight_factor}embeddings.csv")
        df_render = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-render-seq_{weight_factor}embeddings.csv")
        df_pretratrained = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_aux_IIT-CDIP_{weight_factor}embeddings.csv")
        
        # Asignar etiquetas de versi贸n
        df_real["version"] = "real"
        df_par["version"] = "synthetic"
        df_line["version"] = "synthetic"
        df_seq["version"] = "synthetic"
        df_rot["version"] = "synthetic"
        df_zoom["version"] = "synthetic"
        df_render["version"] = "synthetic"
        df_pretratrained["version"] = "pretrained"

        # Asignar fuente (source)
        df_par["source"] = "es-digital-paragraph-degradation-seq"
        df_line["source"] = "es-digital-line-degradation-seq"
        df_seq["source"] = "es-digital-seq"
        df_rot["source"] = "es-digital-rotation-degradation-seq"
        df_zoom["source"] = "es-digital-zoom-degradation-seq"
        df_render["source"] = "es-render-seq"
        df_pretratrained["source"] = "pretrained"

        return {"real": df_real, 
                "synthetic": pd.concat([df_seq, df_line, df_par, df_rot, df_zoom, df_render], ignore_index=True),
                "pretrained": df_pretratrained}
    
    elif model == "Idefics2":
        df_real = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_secret_britanico_{weight_factor}embeddings.csv")
        df_par = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-paragraph-degradation-seq_{weight_factor}embeddings.csv")
        df_line = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-line-degradation-seq_{weight_factor}embeddings.csv")
        df_seq  = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-seq_{weight_factor}embeddings.csv")
        df_rot  = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-rotation-degradation-seq_{weight_factor}embeddings.csv")
        df_zoom = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-zoom-degradation-seq_{weight_factor}embeddings.csv")
        df_render = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_es-render-seq_{weight_factor}embeddings.csv")
        
        # Cargar ambos subconjuntos pretrained y combinarlos
        df_pretratrained_PDFA = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_aux_PDFA_{weight_factor}embeddings.csv")
        df_pretratrained_IDL = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_aux_IDL_{weight_factor}embeddings.csv")
        df_pretratrained = pd.concat([df_pretratrained_PDFA, df_pretratrained_IDL], ignore_index=True)
        
        # Asignar etiquetas de versi贸n
        df_real["version"] = "real"
        df_par["version"] = "synthetic"
        df_line["version"] = "synthetic"
        df_seq["version"] = "synthetic"
        df_rot["version"] = "synthetic"
        df_zoom["version"] = "synthetic"
        df_render["version"] = "synthetic"
        df_pretratrained["version"] = "pretrained"

        # Asignar fuente (source)
        df_par["source"] = "es-digital-paragraph-degradation-seq"
        df_line["source"] = "es-digital-line-degradation-seq"
        df_seq["source"] = "es-digital-seq"
        df_rot["source"] = "es-digital-rotation-degradation-seq"
        df_zoom["source"] = "es-digital-zoom-degradation-seq"
        df_render["source"] = "es-render-seq"
        df_pretratrained["source"] = "pretrained"

        return {"real": df_real, 
                "synthetic": pd.concat([df_seq, df_line, df_par, df_rot, df_zoom, df_render], ignore_index=True),
                "pretrained": df_pretratrained}
    
    else:
        st.error("Modelo no reconocido")
        return None

def split_versions(df_combined, reduced):
    # Asignar las coordenadas si la reducci贸n es 2D
    if reduced.shape[1] == 2:
        df_combined['x'] = reduced[:, 0]
        df_combined['y'] = reduced[:, 1]
    df_real = df_combined[df_combined["version"] == "real"].copy()
    df_synth = df_combined[df_combined["version"] == "synthetic"].copy()
    df_pretrained = df_combined[df_combined["version"] == "pretrained"].copy()
    
    unique_real = sorted(df_real['label'].unique().tolist())
    unique_synth = {}
    for source in df_synth["source"].unique():
        unique_synth[source] = sorted(df_synth[df_synth["source"] == source]['label'].unique().tolist())
    unique_pretrained = sorted(df_pretrained['label'].unique().tolist())
    
    df_dict = {"real": df_real, "synthetic": df_synth, "pretrained": df_pretrained}
    unique_subsets = {"real": unique_real, "synthetic": unique_synth, "pretrained": unique_pretrained}
    return df_dict, unique_subsets

def get_embedding_from_df(df):
    # Retorna el embedding completo (4 dimensiones en este caso) guardado en la columna 'embedding'
    if 'embedding' in df.columns:
        return np.stack(df['embedding'].to_numpy())
    elif 'x' in df.columns and 'y' in df.columns:
        return df[['x', 'y']].values
    else:
        raise ValueError("No se encontr贸 embedding o coordenadas x,y en el DataFrame.")

def compute_cluster_distance(synthetic_points, real_points, metric="wasserstein", bins=20):
    if metric.lower() == "wasserstein":
        n = synthetic_points.shape[0]
        m = real_points.shape[0]
        weights = np.ones(n) / n
        weights_real = np.ones(m) / m
        M = ot.dist(synthetic_points, real_points, metric='euclidean')
        return ot.emd2(weights, weights_real, M)
    elif metric.lower() == "euclidean":
        center_syn = np.mean(synthetic_points, axis=0)
        center_real = np.mean(real_points, axis=0)
        return np.linalg.norm(center_syn - center_real)
    elif metric.lower() == "kl":
        # Para KL usamos histogramas multidimensionales con l铆mites globales en cada dimensi贸n
        all_points = np.vstack([synthetic_points, real_points])
        edges = [
            np.linspace(np.min(all_points[:, i]), np.max(all_points[:, i]), bins+1)
            for i in range(all_points.shape[1])
        ]
        H_syn, _ = np.histogramdd(synthetic_points, bins=edges)
        H_real, _ = np.histogramdd(real_points, bins=edges)
        eps = 1e-10
        P = H_syn + eps
        Q = H_real + eps
        P = P / P.sum()
        Q = Q / Q.sum()
        kl = np.sum(P * np.log(P / Q))
        return kl
    else:
        raise ValueError("M茅trica desconocida. Usa 'wasserstein', 'euclidean' o 'kl'.")

def compute_cluster_distances_synthetic_individual(synthetic_df: pd.DataFrame, df_real: pd.DataFrame, real_labels: list, metric="wasserstein", bins=20) -> pd.DataFrame:
    distances = {}
    groups = synthetic_df.groupby(['source', 'label'])
    for (source, label), group in groups:
        key = f"{label} ({source})"
        data = get_embedding_from_df(group)
        distances[key] = {}
        for real_label in real_labels:
            real_data = get_embedding_from_df(df_real[df_real['label'] == real_label])
            d = compute_cluster_distance(data, real_data, metric=metric, bins=bins)
            distances[key][real_label] = d
    for source, group in synthetic_df.groupby('source'):
        key = f"Global ({source})"
        data = get_embedding_from_df(group)
        distances[key] = {}
        for real_label in real_labels:
            real_data = get_embedding_from_df(df_real[df_real['label'] == real_label])
            d = compute_cluster_distance(data, real_data, metric=metric, bins=bins)
            distances[key][real_label] = d
    return pd.DataFrame(distances).T

def compute_continuity(X, X_embedded, n_neighbors=5):
    n = X.shape[0]
    D_high = pairwise_distances(X, metric='euclidean')
    D_low = pairwise_distances(X_embedded, metric='euclidean')
    indices_high = np.argsort(D_high, axis=1)
    indices_low = np.argsort(D_low, axis=1)
    k_high = indices_high[:, 1:n_neighbors+1]
    k_low = indices_low[:, 1:n_neighbors+1]
    total = 0.0
    for i in range(n):
        set_high = set(k_high[i])
        set_low = set(k_low[i])
        missing = set_high - set_low
        for j in missing:
            rank = np.where(indices_low[i] == j)[0][0]
            total += (rank - n_neighbors)
    norm = 2.0 / (n * n_neighbors * (2*n - 3*n_neighbors - 1))
    continuity_value = 1 - norm * total
    return continuity_value

def create_table(df_distances):
    df_table = df_distances.copy()
    df_table.reset_index(inplace=True)
    df_table.rename(columns={'index': 'Synthetic'}, inplace=True)
    min_row = {"Synthetic": "Min."}
    mean_row = {"Synthetic": "Mean"}
    max_row = {"Synthetic": "Max."}
    for col in df_table.columns:
        if col != "Synthetic":
            min_row[col] = df_table[col].min()
            mean_row[col] = df_table[col].mean()
            max_row[col] = df_table[col].max()
    df_table = pd.concat([df_table, pd.DataFrame([min_row, mean_row, max_row])], ignore_index=True)
    source_table = ColumnDataSource(df_table)
    columns = [TableColumn(field='Synthetic', title='Synthetic')]
    for col in df_table.columns:
        if col != 'Synthetic':
            columns.append(TableColumn(field=col, title=col))
    total_height = 30 + len(df_table)*28
    data_table = DataTable(source=source_table, columns=columns, sizing_mode='stretch_width', height=total_height)
    return data_table, df_table, source_table

def create_figure(dfs, unique_subsets, color_maps, model_name):
    # Se crea el plot para el embedding reducido (asumiendo que es 2D)
    fig = figure(width=600, height=600, tools="wheel_zoom,pan,reset,save", active_scroll="wheel_zoom", tooltips=TOOLTIPS, title="")
    fig.match_aspect = True
    
    # Renderizar datos reales
    real_renderers = add_dataset_to_fig(fig, dfs["real"], unique_subsets["real"],
                                        marker="circle", color_mapping=color_maps["real"],
                                        group_label="Real")
    
    # Renderizar datos sint茅ticos (por fuente)
    marker_mapping = {
        "es-digital-paragraph-degradation-seq": "x",
        "es-digital-line-degradation-seq": "cross",
        "es-digital-seq": "triangle",
        "es-digital-rotation-degradation-seq": "diamond",
        "es-digital-zoom-degradation-seq": "asterisk",
        "es-render-seq": "inverted_triangle"
    }
    synthetic_renderers = {}
    synth_df = dfs["synthetic"]
    for source in unique_subsets["synthetic"]:
        df_source = synth_df[synth_df["source"] == source]
        marker = marker_mapping.get(source, "square")
        renderers = add_synthetic_dataset_to_fig(fig, df_source, unique_subsets["synthetic"][source],
                                                  marker=marker,
                                                  color_mapping=color_maps["synthetic"][source],
                                                  group_label=source)
        synthetic_renderers.update(renderers)
    
    # Agregar el subset pretrained (se puede usar un marcador distinto, por ejemplo, "triangle")
    pretrained_renderers = add_dataset_to_fig(fig, dfs["pretrained"], unique_subsets["pretrained"],
                                               marker="triangle", color_mapping=color_maps["pretrained"],
                                               group_label="Pretrained")
    
    fig.legend.location = "top_right"
    fig.legend.click_policy = "hide"
    show_legend = st.checkbox("Show Legend", value=False, key=f"legend_{model_name}")
    fig.legend.visible = show_legend
    return fig, real_renderers, synthetic_renderers, pretrained_renderers

def add_dataset_to_fig(fig, df, selected_labels, marker, color_mapping, group_label):
    renderers = {}
    for label in selected_labels:
        subset = df[df['label'] == label]
        if subset.empty:
            continue
        source = ColumnDataSource(data=dict(
            x=subset['x'],
            y=subset['y'],
            label=subset['label'],
            img=subset.get('img', "")
        ))
        color = color_mapping[label]
        legend_label = f"{label} ({group_label})"
        if marker == "circle":
            r = fig.circle('x', 'y', size=10, source=source,
                           fill_color=color, line_color=color,
                           legend_label=legend_label)
        elif marker == "square":
            r = fig.square('x', 'y', size=10, source=source,
                           fill_color=color, line_color=color,
                           legend_label=legend_label)
        elif marker == "triangle":
            r = fig.triangle('x', 'y', size=12, source=source,
                             fill_color=color, line_color=color,
                             legend_label=legend_label)
        renderers[label + f" ({group_label})"] = r
    return renderers

def add_synthetic_dataset_to_fig(fig, df, labels, marker, color_mapping, group_label):
    renderers = {}
    for label in labels:
        subset = df[df['label'] == label]
        if subset.empty:
            continue
        source_obj = ColumnDataSource(data=dict(
            x=subset['x'],
            y=subset['y'],
            label=subset['label'],
            img=subset.get('img', "")
        ))
        color = color_mapping[label]
        legend_label = group_label
        if marker == "square":
            r = fig.square('x', 'y', size=10, source=source_obj,
                           fill_color=color, line_color=color,
                           legend_label=legend_label)
        elif marker == "triangle":
            r = fig.triangle('x', 'y', size=12, source=source_obj,
                             fill_color=color, line_color=color,
                             legend_label=legend_label)
        elif marker == "inverted_triangle":
            r = fig.inverted_triangle('x', 'y', size=12, source=source_obj,
                                      fill_color=color, line_color=color,
                                      legend_label=legend_label)
        elif marker == "diamond":
            r = fig.diamond('x', 'y', size=10, source=source_obj,
                            fill_color=color, line_color=color,
                            legend_label=legend_label)
        elif marker == "cross":
            r = fig.cross('x', 'y', size=12, source=source_obj,
                          fill_color=color, line_color=color,
                          legend_label=legend_label)
        elif marker == "x":
            r = fig.x('x', 'y', size=12, source=source_obj,
                      fill_color=color, line_color=color,
                      legend_label=legend_label)
        elif marker == "asterisk":
            r = fig.asterisk('x', 'y', size=12, source=source_obj,
                             fill_color=color, line_color=color,
                             legend_label=legend_label)
        else:
            r = fig.circle('x', 'y', size=10, source=source_obj,
                           fill_color=color, line_color=color,
                           legend_label=legend_label)
        renderers[label + f" ({group_label})"] = r
    return renderers

def get_color_maps(unique_subsets):
    color_map = {}
    num_real = len(unique_subsets["real"])
    red_palette = Reds9[:num_real] if num_real <= 9 else (Reds9 * ((num_real // 9) + 1))[:num_real]
    color_map["real"] = {label: red_palette[i] for i, label in enumerate(sorted(unique_subsets["real"]))}
    
    color_map["synthetic"] = {}
    for source, labels in unique_subsets["synthetic"].items():
        if source == "es-digital-seq":
            palette = Blues9[:len(labels)] if len(labels) <= 9 else (Blues9 * ((len(labels)//9)+1))[:len(labels)]
        elif source == "es-digital-line-degradation-seq":
            palette = Purples9[:len(labels)] if len(labels) <= 9 else (Purples9 * ((len(labels)//9)+1))[:len(labels)]
        elif source == "es-digital-paragraph-degradation-seq":
            palette = BuGn9[:len(labels)] if len(labels) <= 9 else (BuGn9 * ((len(labels)//9)+1))[:len(labels)]
        elif source == "es-digital-rotation-degradation-seq":
            palette = Greys9[:len(labels)] if len(labels) <= 9 else (Greys9 * ((len(labels)//9)+1))[:len(labels)]
        elif source == "es-digital-zoom-degradation-seq":
            palette = Oranges9[:len(labels)] if len(labels) <= 9 else (Oranges9 * ((len(labels)//9)+1))[:len(labels)]
        elif source == "es-render-seq":
            palette = Greens9[:len(labels)] if len(labels) <= 9 else (Greens9 * ((len(labels)//9)+1))[:len(labels)]
        else:
            palette = Blues9[:len(labels)] if len(labels) <= 9 else (Blues9 * ((len(labels)//9)+1))[:len(labels)]
        color_map["synthetic"][source] = {label: palette[i] for i, label in enumerate(sorted(labels))}
    
    # Asignar colores al subset pretrained usando, por ejemplo, la paleta Purples9
    num_pretrained = len(unique_subsets["pretrained"])
    purple_palette = Purples9[:num_pretrained] if num_pretrained <= 9 else (Purples9 * ((num_pretrained // 9) + 1))[:num_pretrained]
    color_map["pretrained"] = {label: purple_palette[i] for i, label in enumerate(sorted(unique_subsets["pretrained"]))}
    
    return color_map

def calculate_cluster_centers(df, labels):
    centers = {}
    for label in labels:
        subset = df[df['label'] == label]
        if not subset.empty and 'x' in subset.columns and 'y' in subset.columns:
            centers[label] = (subset['x'].mean(), subset['y'].mean())
    return centers

def compute_global_regression(df_combined, embedding_cols, tsne_params, df_f1, reduction_method="t-SNE", distance_metric="wasserstein"):
    if reduction_method == "PCA":
        reducer = PCA(n_components=N_COMPONENTS)
    else:
        reducer = TSNE(n_components=2, random_state=42, 
                         perplexity=tsne_params["perplexity"], 
                         learning_rate=tsne_params["learning_rate"])
    
    reduced = reducer.fit_transform(df_combined[embedding_cols].values)
    # Guardamos el embedding completo (por ejemplo, 4 dimensiones en PCA)
    df_combined['embedding'] = list(reduced)
    # Si el embedding es 2D, asignamos x e y para visualizaci贸n
    if reduced.shape[1] == 2:
        df_combined['x'] = reduced[:, 0]
        df_combined['y'] = reduced[:, 1]
    
    explained_variance = None
    if reduction_method == "PCA":
        explained_variance = reducer.explained_variance_ratio_
    
    trust = None
    cont = None
    if reduction_method == "t-SNE":
        X = df_combined[embedding_cols].values
        trust = trustworthiness(X, reduced, n_neighbors=TSNE_NEIGHBOURS)
        cont = compute_continuity(X, reduced, n_neighbors=TSNE_NEIGHBOURS)
    
    dfs_reduced, unique_subsets = split_versions(df_combined, reduced)
    
    df_distances = compute_cluster_distances_synthetic_individual(
        dfs_reduced["synthetic"],
        dfs_reduced["real"],
        unique_subsets["real"],
        metric=distance_metric
    )
    
    global_distances = {}
    for idx in df_distances.index:
        if idx.startswith("Global"):
            source = idx.split("(")[1].rstrip(")")
            global_distances[source] = df_distances.loc[idx].values
            
    all_x = []
    all_y = []
    for source in df_f1.columns:
        if source in global_distances:
            x_vals = global_distances[source]
            y_vals = df_f1[source].values
            all_x.extend(x_vals)
            all_y.extend(y_vals)
    all_x_arr = np.array(all_x).reshape(-1, 1)
    all_y_arr = np.array(all_y)
    
    model_global = LinearRegression().fit(all_x_arr, all_y_arr)
    r2 = model_global.score(all_x_arr, all_y_arr)
    slope = model_global.coef_[0]
    intercept = model_global.intercept_
    
    scatter_fig = figure(width=600, height=600, tools="pan,wheel_zoom,reset,save", y_range=(0, 1), 
                         title="Scatter Plot: Distance vs F1")
    source_colors = {
        "es-digital-paragraph-degradation-seq": "blue",
        "es-digital-line-degradation-seq": "green",
        "es-digital-seq": "red",
        "es-digital-zoom-degradation-seq": "orange",
        "es-digital-rotation-degradation-seq": "purple",
        "es-digital-rotation-zoom-degradation-seq": "brown",
        "es-render-seq": "cyan"
    }
    for source in df_f1.columns:
        if source in global_distances:
            x_vals = global_distances[source]
            y_vals = df_f1[source].values
            data = {"x": x_vals, "y": y_vals, "Fuente": [source]*len(x_vals)}
            cds = ColumnDataSource(data=data)
            scatter_fig.circle('x', 'y', size=8, alpha=0.7, source=cds,
                               fill_color=source_colors.get(source, "gray"),
                               line_color=source_colors.get(source, "gray"),
                               legend_label=source)
    scatter_fig.xaxis.axis_label = "Distance (Global, por Colegio)"
    scatter_fig.yaxis.axis_label = "F1 Score"
    scatter_fig.legend.location = "top_right"
    hover_tool = HoverTool(tooltips=[("Distance", "@x"), ("F1", "@y"), ("Subset", "@Fuente")])
    scatter_fig.add_tools(hover_tool)
    # scatter_fig.match_aspect = True
    
    x_line = np.linspace(all_x_arr.min(), all_x_arr.max(), 100)
    y_line = model_global.predict(x_line.reshape(-1, 1))
    scatter_fig.line(x_line, y_line, line_width=2, line_color="black", legend_label="Global Regression")
    
    results = {
        "R2": r2,
        "slope": slope,
        "intercept": intercept,
        "scatter_fig": scatter_fig,
        "dfs_reduced": dfs_reduced,
        "unique_subsets": unique_subsets,
        "df_distances": df_distances,
        "explained_variance": explained_variance,
        "trustworthiness": trust,
        "continuity": cont
    }
    
    if reduction_method == "PCA":
        results["pca_model"] = reducer  # Agregamos el objeto PCA para usarlo luego en los plots
    
    return results

def optimize_tsne_params(df_combined, embedding_cols, df_f1, distance_metric):
    perplexity_range = np.linspace(30, 50, 10)
    learning_rate_range = np.linspace(200, 1000, 20)
    
    best_R2 = -np.inf
    best_params = None
    total_steps = len(perplexity_range) * len(learning_rate_range)
    step = 0

    progress_text = st.empty()
    
    for p in perplexity_range:
        for lr in learning_rate_range:
            step += 1
            progress_text.text(f"Evaluating: Perplexity={p:.2f}, Learning Rate={lr:.2f} (Step {step}/{total_steps})")
            
            tsne_params = {"perplexity": p, "learning_rate": lr}
            result = compute_global_regression(df_combined, embedding_cols, tsne_params, df_f1, reduction_method="t-SNE", distance_metric=distance_metric)
            r2_temp = result["R2"]
            st.write(f"Parameters: Perplexity={p:.2f}, Learning Rate={lr:.2f} -> R虏={r2_temp:.4f}")
            
            if r2_temp > best_R2:
                best_R2 = r2_temp
                best_params = (p, lr)
    
    progress_text.text("Optimization completed!")
    return best_params, best_R2

def run_model(model_name):
    version = st.selectbox("Select Model Version:", options=["vanilla", "finetuned_real"], key=f"version_{model_name}")
    # Selector para el m茅todo de c贸mputo del embedding
    embedding_computation = st.selectbox("驴C贸mo se computa el embedding?", options=["averaged", "weighted"], key=f"embedding_method_{model_name}")
    # Se asigna el prefijo correspondiente

    if embedding_computation == "weighted":
         selected_weight_factor = st.selectbox(
             "Seleccione el Weight Factor", 
             options=[0.05, 0.1, 0.25, 0.5], 
             index=0,  # 铆ndice 1 para que por defecto sea 0.05
             key=f"weight_factor_{model_name}"
         )
         weight_factor = f"{selected_weight_factor}_"
    else:
         weight_factor = ""
    
    embeddings = load_embeddings(model_name, version, embedding_computation, weight_factor)
    if embeddings is None:
        return

    # Nuevo selector para incluir o excluir el dataset pretrained
    include_pretrained = st.checkbox("Incluir dataset pretrained", value=True, key=f"legend_{model_name}_pretrained")
    if not include_pretrained:
        # Removemos la entrada pretrained del diccionario, si existe.
        embeddings.pop("pretrained", None)
    
    # Extraer columnas de embedding de los datos "real"
    embedding_cols = [col for col in embeddings["real"].columns if col.startswith("dim_")]
    # Concatenamos los datasets disponibles (ahora, sin pretrained si se deseleccion贸)
    df_combined = pd.concat(list(embeddings.values()), ignore_index=True)
    
    try:
        df_f1 = pd.read_csv("data/f1-donut.csv", sep=';', index_col=0)
    except Exception as e:
        st.error(f"Error loading f1-donut.csv: {e}")
        return

    st.markdown('<h6 class="sub-title">Select Dimensionality Reduction Method</h6>', unsafe_allow_html=True)
    reduction_method = st.selectbox("", options=["PCA", "t-SNE"], key=f"reduction_{model_name}")
    
    distance_metric = st.selectbox("Select Distance Metric:", 
                                   options=["Euclidean", "Wasserstein", "KL"], 
                                   key=f"distance_metric_{model_name}")
    
    tsne_params = {}
    if reduction_method == "t-SNE":
        if st.button("Optimize TSNE parameters", key=f"optimize_tsne_{model_name}"):
            st.info("Running optimization, this can take a while...")
            best_params, best_R2 = optimize_tsne_params(df_combined, embedding_cols, df_f1, distance_metric.lower())
            st.success(f"Best parameters: Perplexity = {best_params[0]:.2f}, Learning Rate = {best_params[1]:.2f} with R虏 = {best_R2:.4f}")
            tsne_params = {"perplexity": best_params[0], "learning_rate": best_params[1]}
        else:
            perplexity_val = st.number_input(
                "Perplexity", 
                min_value=5.0, 
                max_value=50.0, 
                value=30.0, 
                step=1.0, 
                format="%.2f",
                key=f"perplexity_{model_name}"
            )
            learning_rate_val = st.number_input(
                "Learning Rate", 
                min_value=10.0, 
                max_value=1000.0, 
                value=200.0, 
                step=10.0, 
                format="%.2f",
                key=f"learning_rate_{model_name}"
            )
            tsne_params = {"perplexity": perplexity_val, "learning_rate": learning_rate_val}
    
    result = compute_global_regression(df_combined, embedding_cols, tsne_params, df_f1, reduction_method=reduction_method, distance_metric=distance_metric.lower())
    
    reg_metrics = pd.DataFrame({
        "Slope": [result["slope"]],
        "Intercept": [result["intercept"]],
        "R2": [result["R2"]]
    })
    st.table(reg_metrics)
    
    if reduction_method == "PCA" and result["explained_variance"] is not None:
        st.subheader("Explained Variance Ratio")
        component_names = [f"PC{i+1}" for i in range(len(result["explained_variance"]))]
        variance_df = pd.DataFrame({
            "Component": component_names,
            "Explained Variance": result["explained_variance"]
        })
        st.table(variance_df)
    elif reduction_method == "t-SNE":
        st.subheader("t-SNE Quality Metrics")
        st.write(f"Trustworthiness: {result['trustworthiness']:.4f}")
        st.write(f"Continuity: {result['continuity']:.4f}")

    # Mostrar los plots de loadings si se us贸 PCA (para el conjunto combinado)
    if reduction_method == "PCA" and result.get("pca_model") is not None:
        pca_model = result["pca_model"]
        components = pca_model.components_  # Shape: (n_components, n_features)
        
        st.subheader("Pesos de las Componentes Principales (Loadings) - Conjunto Combinado")
        for i, comp in enumerate(components):
            source = ColumnDataSource(data=dict(
                dimensions=embedding_cols,
                weight=comp
            ))
            p = figure(x_range=embedding_cols, title=f"Componente Principal {i+1}",
                       plot_height=400, plot_width=600,
                       toolbar_location="above",
                       tools="pan,wheel_zoom,reset,save,hover",
                       active_scroll="wheel_zoom")

            # Establecer fondo blanco
            p.background_fill_color = "white"
            # Mostrar solo grilla horizontal
            p.xgrid.grid_line_color = None
            p.ygrid.grid_line_color = "gray"
            p.vbar(x='dimensions', top='weight', width=0.8, source=source)
            p.xaxis.major_label_text_font_size = '0pt'
            hover = HoverTool(tooltips=[("Dimensi贸n", "@dimensions"), ("Peso", "@weight")])
            p.add_tools(hover)
            p.xaxis.axis_label = "Dimensiones originales"
            p.yaxis.axis_label = "Peso"
            st.bokeh_chart(p)
    
    data_table, df_table, source_table = create_table(result["df_distances"])
    real_subset_names = list(df_table.columns[1:])
    real_select = Select(title="", value=real_subset_names[0], options=real_subset_names)
    reset_button = Button(label="Reset Colors", button_type="primary")
    line_source = ColumnDataSource(data={'x': [], 'y': []})
    
    if (reduction_method == "t-SNE" and N_COMPONENTS == 2) or (reduction_method == "PCA" and N_COMPONENTS == 2):
        fig, real_renderers, synthetic_renderers, pretrained_renderers = create_figure(
            result["dfs_reduced"],
            result["unique_subsets"],
            get_color_maps(result["unique_subsets"]),
            model_name
        )
        fig.line('x', 'y', source=line_source, line_width=2, line_color='black')
        centers_real = calculate_cluster_centers(result["dfs_reduced"]["real"], result["unique_subsets"]["real"])
        real_centers_js = {k: [v[0], v[1]] for k, v in centers_real.items()}
        synthetic_centers = {}
        synth_labels = sorted(result["dfs_reduced"]["synthetic"]['label'].unique().tolist())
        for label in synth_labels:
            subset = result["dfs_reduced"]["synthetic"][result["dfs_reduced"]["synthetic"]['label'] == label]
            if 'x' in subset.columns and 'y' in subset.columns:
                synthetic_centers[label] = [subset['x'].mean(), subset['y'].mean()]
        callback = CustomJS(args=dict(source=source_table, line_source=line_source,
                                  synthetic_centers=synthetic_centers,
                                  real_centers=real_centers_js,
                                  real_select=real_select),
        code="""
            var selected = source.selected.indices;
            if (selected.length > 0) {
                var idx = selected[0];
                var data = source.data;
                var synth_label = data['Synthetic'][idx];
                var real_label = real_select.value;
                var syn_coords = synthetic_centers[synth_label];
                var real_coords = real_centers[real_label];
                line_source.data = {'x': [syn_coords[0], real_coords[0]], 'y': [syn_coords[1], real_coords[1]]};
                line_source.change.emit();
            } else {
                line_source.data = {'x': [], 'y': []};
                line_source.change.emit();
            }
        """)
        source_table.selected.js_on_change('indices', callback)
        real_select.js_on_change('value', callback)
    
        reset_callback = CustomJS(args=dict(line_source=line_source),
        code="""
            line_source.data = {'x': [], 'y': []};
            line_source.change.emit();
        """)
        reset_button.js_on_event("button_click", reset_callback)
        layout = column(fig, result["scatter_fig"], column(real_select, reset_button, data_table))
    else:
        layout = column(result["scatter_fig"], column(real_select, reset_button, data_table))
    
    st.bokeh_chart(layout, use_container_width=True)

    buffer = io.BytesIO()
    df_table.to_excel(buffer, index=False)
    buffer.seek(0)
    
    st.download_button(
        label="Export Table",
        data=buffer,
        file_name=f"cluster_distances_{model_name}.xlsx",
        mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
        key=f"download_button_excel_{model_name}"
    )

    # Nuevo bloque: PCA solo para df_real
    if reduction_method == "PCA":
        st.markdown("## PCA - Solo Muestras Reales")
        # Extraemos 煤nicamente las muestras reales
        df_real_only = embeddings["real"].copy()
        pca_real = PCA(n_components=N_COMPONENTS)
        reduced_real = pca_real.fit_transform(df_real_only[embedding_cols].values)
        df_real_only['embedding'] = list(reduced_real)
        if reduced_real.shape[1] == 2:
            df_real_only['x'] = reduced_real[:, 0]
            df_real_only['y'] = reduced_real[:, 1]
        explained_variance_real = pca_real.explained_variance_ratio_
        unique_labels_real = sorted(df_real_only['label'].unique().tolist())
        
        # Definir mapeo de colores usando la paleta Reds9
        num_labels = len(unique_labels_real)
        if num_labels <= 9:
            red_palette = Reds9[:num_labels]
        else:
            red_palette = (Reds9 * ((num_labels // 9) + 1))[:num_labels]
        real_color_mapping = {label: red_palette[i] for i, label in enumerate(unique_labels_real)}
        
        st.subheader("PCA - Real: Explained Variance Ratio")
        component_names_real = [f"PC{i+1}" for i in range(len(explained_variance_real))]
        variance_df_real = pd.DataFrame({
            "Component": component_names_real,
            "Explained Variance": explained_variance_real
        })
        st.table(variance_df_real)

        # Mostrar los plots de loadings (Component Loadings)
        st.subheader("PCA - Real: Component Loadings")
        st.markdown("### Pesos de las Componentes Principales (Loadings) - Conjunto Combinado")
        for i, comp in enumerate(pca_real.components_):
            source = ColumnDataSource(data=dict(
                dimensions=embedding_cols,
                weight=comp
            ))
            p = figure(
                x_range=embedding_cols,
                title=f"Componente Principal {i+1}",
                plot_height=400,
                plot_width=600,
                toolbar_location="above",
                tools="pan,wheel_zoom,reset,save,hover",
                active_scroll="wheel_zoom"
            )
            # Fondo blanco y solo grid horizontal
            p.background_fill_color = "white"
            p.xgrid.grid_line_color = None
            p.ygrid.grid_line_color = "gray"
            p.vbar(x='dimensions', top='weight', width=0.8, source=source,
                fill_color="#2b83ba", line_color="#2b83ba")
            # No se muestran etiquetas en el eje horizontal
            p.xaxis.axis_label = "Dimensiones Originales"
            p.xaxis.major_label_text_font_size = '0pt'
            # Configurar el HoverTool
            hover = p.select_one(HoverTool)
            hover.tooltips = [("Dimensi贸n", "@dimensions"), ("Peso", "@weight")]
            st.bokeh_chart(p)
        
        # Segundo PCA: Proyecci贸n de todos los subconjuntos usando los loadings calculados con df_real_only
        st.subheader("PCA - Todos los subconjuntos proyectados (usando loadings de df_real)")

        # Crear un diccionario para almacenar las proyecciones usando el PCA calculado con las muestras reales (pca_real)
        df_all = {}

        # Proyectar las muestras reales
        df_real_proj = embeddings["real"].copy()
        proj_real = pca_real.transform(df_real_proj[embedding_cols].values)
        df_real_proj['pc1'] = proj_real[:, 0]
        df_real_proj['pc2'] = proj_real[:, 1]
        df_all["real"] = df_real_proj

        # Proyectar el subconjunto synthetic, si existe
        if "synthetic" in embeddings:
            df_synth_proj = embeddings["synthetic"].copy()
            proj_synth = pca_real.transform(df_synth_proj[embedding_cols].values)
            df_synth_proj['pc1'] = proj_synth[:, 0]
            df_synth_proj['pc2'] = proj_synth[:, 1]
            df_all["synthetic"] = df_synth_proj

        # Proyectar el subconjunto pretrained, si existe
        if "pretrained" in embeddings:
            df_pretr_proj = embeddings["pretrained"].copy()
            proj_pretr = pca_real.transform(df_pretr_proj[embedding_cols].values)
            df_pretr_proj['pc1'] = proj_pretr[:, 0]
            df_pretr_proj['pc2'] = proj_pretr[:, 1]
            df_all["pretrained"] = df_pretr_proj

        # Para utilizar las mismas funciones de plot (create_figure, add_dataset_to_fig, add_synthetic_dataset_to_fig),
        # renombramos las columnas 'pc1' y 'pc2' a 'x' y 'y' en cada dataframe
        for key in df_all:
            df_all[key]["x"] = df_all[key]["pc1"]
            df_all[key]["y"] = df_all[key]["pc2"]

        # Construir los subconjuntos 煤nicos con la granularidad deseada:
        # - Para "real" y "pretrained": agrupamos por label.
        # - Para "synthetic": agrupamos por la columna "source" (cada source tendr谩 sus labels).
        unique_subsets = {}
        # Real:
        unique_subsets["real"] = sorted(df_all["real"]['label'].unique().tolist())
        # Synthetic:
        if "synthetic" in df_all:
            unique_synth = {}
            for source in df_all["synthetic"]["source"].unique():
                unique_synth[source] = sorted(df_all["synthetic"][df_all["synthetic"]["source"] == source]['label'].unique().tolist())
            unique_subsets["synthetic"] = unique_synth
        else:
            unique_subsets["synthetic"] = {}
        # Pretrained:
        if "pretrained" in df_all:
            unique_subsets["pretrained"] = sorted(df_all["pretrained"]['label'].unique().tolist())
        else:
            unique_subsets["pretrained"] = []

        # Obtener los mapeos de colores utilizando la funci贸n ya definida
        color_maps = get_color_maps(unique_subsets)

        # Definir un mapeo de marcadores para los subconjuntos synthetic (granularidad por source)
        marker_mapping = {
            "es-digital-paragraph-degradation-seq": "x",
            "es-digital-line-degradation-seq": "cross",
            "es-digital-seq": "triangle",
            "es-digital-rotation-degradation-seq": "diamond",
            "es-digital-zoom-degradation-seq": "asterisk",
            "es-render-seq": "inverted_triangle"
        }

        # Ahora, crear la figura utilizando las funciones existentes para mantener la granularidad:
        # Se plotean las muestras reales, synthetic (por source) y pretrained con sus respectivos marcadores y colores.
        fig_all = figure(
            title="PCA - Todos los subconjuntos proyectados",
            plot_width=600,
            plot_height=600,
            tools="pan,wheel_zoom,reset,save,hover",
            active_scroll="wheel_zoom",
            background_fill_color="white"
        )
        # Solo grid horizontal
        fig_all.xgrid.grid_line_color = None
        fig_all.ygrid.grid_line_color = "gray"

        # Ploteamos los puntos de las muestras reales (agrupados por label)
        for label in unique_subsets["real"]:
            subset = df_all["real"][df_all["real"]['label'] == label]
            source = ColumnDataSource(data={
                'x': subset['x'],
                'y': subset['y'],
                'label': subset['label']
            })
            # Usamos 'circle' para las reales
            fig_all.circle('x', 'y', size=10,
                        fill_color=color_maps["real"][label],
                        line_color=color_maps["real"][label],
                        legend_label=f"Real: {label}",
                        source=source)

        # Ploteamos los puntos de synthetic, diferenciando cada source con su marcador
        if unique_subsets["synthetic"]:
            for source_name, labels in unique_subsets["synthetic"].items():
                df_source = df_all["synthetic"][df_all["synthetic"]["source"] == source_name]
                marker = marker_mapping.get(source_name, "square")
                # Para cada label en ese source, usamos la funci贸n auxiliar
                renderers = add_synthetic_dataset_to_fig(fig_all, df_source, labels,
                                                        marker=marker,
                                                        color_mapping=color_maps["synthetic"][source_name],
                                                        group_label=source_name)
        # Ploteamos los puntos de pretrained (agrupados por label)
        if unique_subsets["pretrained"]:
            for label in unique_subsets["pretrained"]:
                subset = df_all["pretrained"][df_all["pretrained"]['label'] == label]
                source = ColumnDataSource(data={
                    'x': subset['x'],
                    'y': subset['y'],
                    'label': subset['label']
                })
                # Usamos 'triangle' para pretrained (por ejemplo)
                fig_all.triangle('x', 'y', size=10,
                                fill_color=color_maps["pretrained"][label],
                                line_color=color_maps["pretrained"][label],
                                legend_label=f"Pretrained: {label}",
                                source=source)

        # Calcular el centroide y el radio (usando solo las muestras reales)
        center_x = df_all["real"]['x'].mean()
        center_y = df_all["real"]['y'].mean()
        distances = np.sqrt((df_all["real"]['x'] - center_x)**2 + (df_all["real"]['y'] - center_y)**2)
        radius = distances.max()

        # Dibujar el centroide y la circunferencia en el plot
        fig_all.circle(x=center_x, y=center_y, size=15,
                    fill_color="black", line_color="black", legend_label="Centroide")
        fig_all.circle(x=center_x, y=center_y, radius=radius,
                    fill_color=None, line_color="black", line_dash="dashed", legend_label="Circunferencia")

        fig_all.xaxis.axis_label = "PC1"
        fig_all.yaxis.axis_label = "PC2"
        hover_all = fig_all.select_one(HoverTool)
        hover_all.tooltips = [("Label", "@label"), ("PC1", "@x"), ("PC2", "@y")]

        # Agregar checkbox para mostrar u ocultar la leyenda, igual que en el primer PCA
        show_legend_second = st.checkbox("Show Legend", value=False, key=f"legend_second_{model_name}")
        fig_all.legend.visible = show_legend_second
        fig_all.legend.location = "top_right"
        fig_all.match_aspect = True

        st.bokeh_chart(fig_all)

        # Mostrar el valor del radio debajo del gr谩fico
        st.write(f"El radio de la circunferencia (calculado a partir de las muestras reales) es: {radius:.4f}")


        # --- C谩lculo de distancias y scatter plot de Distance vs F1 para el nuevo PCA ---

        # Se calcula la distancia de cada subset synthetic a cada subset real usando los datos proyectados (df_all)
        # Se utiliza la funci贸n compute_cluster_distances_synthetic_individual ya definida
        real_labels_new = sorted(df_all["real"]['label'].unique().tolist())
        df_distances_new = compute_cluster_distances_synthetic_individual(
            df_all["synthetic"],
            df_all["real"],
            real_labels_new,
            metric="wasserstein",  # Puedes cambiar la m茅trica seg煤n lo requieras
            bins=20
        )

        # Extraer las distancias globales (por cada source) del dataframe obtenido,
        # buscando filas cuyo 铆ndice comience con "Global" (formato "Global (source)")
        global_distances_new = {}
        for idx in df_distances_new.index:
            if idx.startswith("Global"):
                source_name = idx.split("(")[1].rstrip(")")
                global_distances_new[source_name] = df_distances_new.loc[idx].values

        # Ahora, relacionar estas distancias con los valores de F1 (ya cargados en df_f1)
        all_x_new = []
        all_y_new = []
        for source in df_f1.columns:
            if source in global_distances_new:
                x_vals = global_distances_new[source]
                y_vals = df_f1[source].values
                all_x_new.extend(x_vals)
                all_y_new.extend(y_vals)
        all_x_arr_new = np.array(all_x_new).reshape(-1, 1)
        all_y_arr_new = np.array(all_y_new)

        # Realizar la regresi贸n lineal global sobre estos datos
        model_global_new = LinearRegression().fit(all_x_arr_new, all_y_arr_new)
        r2_new = model_global_new.score(all_x_arr_new, all_y_arr_new)
        slope_new = model_global_new.coef_[0]
        intercept_new = model_global_new.intercept_

        # Crear el scatter plot
        scatter_fig_new = figure(
            width=600,
            height=600,
            tools="pan,wheel_zoom,reset,save,hover",
            active_scroll="wheel_zoom",
            title="Scatter Plot: Distance vs F1 (Nueva PCA)",
            background_fill_color="white",
            y_range=(0, 1)
        )
        # Configurar 煤nicamente grid horizontal
        scatter_fig_new.xgrid.grid_line_color = None
        scatter_fig_new.ygrid.grid_line_color = "gray"
        scatter_fig_new.match_aspect = True

        # Mantenemos el mismo c贸digo de colores que en el otro scatter plot
        source_colors = {
            "es-digital-paragraph-degradation-seq": "blue",
            "es-digital-line-degradation-seq": "green",
            "es-digital-seq": "red",
            "es-digital-zoom-degradation-seq": "orange",
            "es-digital-rotation-degradation-seq": "purple",
            "es-digital-rotation-zoom-degradation-seq": "brown",
            "es-render-seq": "cyan"
        }

        # Dibujar cada conjunto: para cada source (por ejemplo, es-render-seq, etc.)
        for source in df_f1.columns:
            if source in global_distances_new:
                x_vals = global_distances_new[source]
                y_vals = df_f1[source].values
                data = {"x": x_vals, "y": y_vals, "Fuente": [source]*len(x_vals)}
                cds = ColumnDataSource(data=data)
                scatter_fig_new.circle(
                    'x', 'y', size=8, alpha=0.7, source=cds,
                    fill_color=source_colors.get(source, "gray"),
                    line_color=source_colors.get(source, "gray"),
                    legend_label=source
                )

        scatter_fig_new.xaxis.axis_label = "Distance (Global, por Colegio) - Nueva PCA"
        scatter_fig_new.yaxis.axis_label = "F1 Score"
        scatter_fig_new.legend.location = "top_right"

        hover_tool_new = scatter_fig_new.select_one(HoverTool)
        hover_tool_new.tooltips = [("Distance", "@x"), ("F1", "@y"), ("Subset", "@Fuente")]

        # Dibujar la l铆nea de regresi贸n global
        x_line_new = np.linspace(all_x_arr_new.min(), all_x_arr_new.max(), 100)
        y_line_new = model_global_new.predict(x_line_new.reshape(-1,1))
        scatter_fig_new.line(x_line_new, y_line_new, line_width=2, line_color="black", legend_label="Global Regression")

        st.bokeh_chart(scatter_fig_new)

        st.write(f"Regresi贸n global (Nueva PCA): R虏 = {r2_new:.4f}, Slope = {slope_new:.4f}, Intercept = {intercept_new:.4f}")


def main():
    config_style()
    tabs = st.tabs(["Donut", "Idefics2"])
    with tabs[0]:
        st.markdown('<h2 class="sub-title">Donut 馃</h2>', unsafe_allow_html=True)
        run_model("Donut")
    with tabs[1]:
        st.markdown('<h2 class="sub-title">Idefics2 馃</h2>', unsafe_allow_html=True)
        run_model("Idefics2")

if __name__ == "__main__":
    main()